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Abstract

This work presents a novel interactive algorithm for simulation of light transport in clouds. Exploiting the high temporal coherence
of the typical illumination and morphology of clouds we build on volumetric photon mapping, which we modify to allow for
interactive rendering speeds – instead of building a fresh irregular photon map for every scene state change we accumulate photon
contributions in a regular grid structure. This is then continuously being refreshed by re-shooting only a fraction of the total amount
of photons in each frame. To maintain its temporal coherence and low variance, a low-resolution grid is initially used, and is then
upsampled to the density field resolution on a physical basis in each frame. We also present a technique to store and reconstruct the
angular illumination information by exploiting properties of the standard Henyey-Greenstein function, namely its ability to express
anisotropic angular distributions with a single dominating direction. The presented method is physically-plausible, conceptually
simple and comparatively easy to implement. Moreover, it operates only above the cloud density field, thus not requiring any
precomputation, and handles all light sources typical for the given environment, i. e., where one of the light sources dominates.
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1. Introduction

Radiative transport in clouds and participating media in gen-
eral is an important and broad problem. Specifically, interactive
cloud rendering is often needed when an application includes
interactive visualization of outdoor environments. That includes
serious applications such as flight and soaring simulators or me-
teorological visualizations, but also popular applications, for
instance 3D games and packages like Google Earth.

Among participating media, clouds stand out as a particularly
difficult case for state-of-the-art volumetric light transport tech-
niques. Their virtually unit albedo and small relative mean free
photon path imply simulation of many scattering orders. The
very high scattering anisotropy of cloud droplets in turn causes
difficulties for purely ray-based methods [37] and approaches
based on discrete light propagation volumes [7, 14, 12]. The
latter property in combination with the usual high complexity
of cloud shapes also makes diffusion-based approaches [40, 32]
unsuitable, mainly because it is usually difficult to fulfil the
boundary conditions of the diffusion equation. Finally, the high
variability of morphological cloud types makes it difficult to
establish an efficient representation of their mass distributions.
Naturally, these issues are even more challenging for interactive
rendering techniques.

The method presented in this work contributes to the topic in
question in these main ways:

• We present a general scheme for propagation of light energy
inside participating media using photon beams. The energy is
stored in a regular grid-like photon map, which is decoupled
from the cloud density field. This allows a continuous updat-

ing of the photon map by re-shooting only a fraction of the
photons that constitute the scene illumination in each frame.
Although this potentially causes the photon map to contain a
partially obsolete illumination solution, in slowly-changing
environments such as clouds the difference from the ideal
solution will typically be negligible.

• To avoid the necessity of explicitly storing individual photons
we introduce a specialized representation of the angular illu-
mination information. This representation accumulates the
average cosine of the stored photons in respect to a reference
direction (usually the direction of the strongest light source
present in the scene). This accumulated value in fact is the
asymmetry factor of the angular photon distribution in each
cell, and is subsequently used to reconstruct the directionally-
dependent illumination by evaluating the Henyey-Greenstein
function parametrized by this factor and by the reference
direction.

• Additionally we present an efficient physically-based upsam-
pling scheme to improve the resolution of the photon map by
using an additional knowledge available to us in the simula-
tion. The upsampling is a fast parallel operation and allows to
dramatically decrease the resolution of the photon map, along
with the number of traced photons required for obtaining a
noise-free solution.

• The presented method natively maps well to modern GPUs,
which we show by our own implementation. Despite not con-
taining any specific low-level optimizations it is capable of
simulating the radiative transport process in clouds at interac-
tive speeds.
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Figure 1: Cumulus congestus and Cirrocumulus altocumulus rendered fully dynamically by our approach at 50 and 90 FPS, respectively.

Single directional scattering High-order directional scattering Skylight scattering Combined solution

Figure 2: Decomposition of the three basic scattering categories in clouds. Note that the transition from single to second and higher orders of scattering is very subtle
due to the high scattering anisotropy. For this reason methods that handle single and multiple scattering separately necessarily produce inconsistent results.

2. Related Work

A large volume of research concerns itself with participating
media and related subjects [6]. We will therefore limit ourselves
to works directly relevant in the current context.

Photon mapping. The intrinsic ability of the basic photon map-
ping algorithm to cache radiant energy in the scene shows to
be very beneficial for participating media rendering. This appli-
cation has first been described by Jensen and Christensen [21].
Later, Jarosz et al. [20] developed a new beam gathering tech-
nique specifically for participating media and subsequently gen-
eralized it also for propagation of the radiant energy itself [19].
Their contribution represents a significant improvement over the
classical point-based photon mapping, although it remains to be
seen how it would cope with the very high amount of scattering
orders encountered in clouds.

Several attempts to speed-up photon mapping by continuously
updating the photon map exist. Airieau et al. [1] developed an
interactive technique for continuous streaming of photons, where
parts of the scene where illumination changes more rapidly are
updated with higher priority. A similar (interactive) method has
been described by Dmitriev et al. [8], who utilized the periodicity
properties of Halton sequences to identify the photon groups
to update. Jiménez et al. [22] then generalized this approach
to participating media, which however causes the algorithm to
perform about an order of magnitude slower than necessary for
interactive frame rates. Notable GPU implementations of photon
mapping were proposed by Purcell et al. [36] and Zhou et al. [47],
but only Krüger et al. [27] consider participating media. Photons
can be splatted to surfaces efficiently using the GPU instead of
performing costly density estimations [33]. We generalize this
idea to volumetric photon mapping.

Interactive methods for general media. In recent years the in-
creasing computational power of modern GPUs enabled develop-

ment of interactive approaches for participating media rendering,
although they are still burdened by various limitations.

Approaches that consider only a subset of light paths in the
medium are also common, partly because they usually map well
to modern GPU architectures. Often they restrict themselves to
modelling single scattering, even when including advanced ef-
fects such as volumetric caustics [45, 10, 2, 29]. Ihrke et al. [17]
use wavefront rendering to evaluate the Eikonal equation in
volumes, considering refraction and single scattering in hetero-
geneous media. Kaplanyan and Dachsbacher [23] use a discrete-
element approach similar to lattice-Boltzmann lighting in order
to render low-frequency global illumination and low-order scat-
tering. Shadows for single-scattering can efficiently be computed
using deep shadow maps [30], which generalize binary shadow
maps to storing a transmission function per pixel. Yet again,
these methods are unsuitable for clouds rendering — that is
simply because they neglect the higher scattering orders, which
play a significant role for the appearance of clouds.

Engelhardt et al. [11] present a method based on the original
instant radiosity approach by Keller [24]. Although successfully
capturing appearance of several participating media, it shares
the limitations of the original instant radiosity approach, namely
the difficulty with handling highly anisotropic reflections and
scattering.

Precomputation and Caching. Another possible approach is
caching of illumination globally for the entire volume [18, 34];
various methods from this group then differ primarily in how
this is achieved. Kautz et al. [39] include simple participating
media in their PRT approach, while Zhou et al. [48] use a decom-
position of the medium into a low frequency representation and
a high-frequency residual field, and solve the radiative transport
in the medium by applying the diffusion equation to the low-
frequency field. However, these approaches rely significantly
on precomputations and therefore are not suitable for dynamic
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media. Moreover, the illumination information is encoded into
spherical harmonic functions, which are not well suited for rep-
resenting highly anisotropic angular distributions.

Cloud rendering. Although specialized methods for rendering
of clouds are more typical in the interactive domain, early non-
interactive methods focused on simulating this phenomenon
exist. Examples of these include works by Gardner [13] and
Nishita et al. [35]. These clearly demonstrate that clouds have
always been of prime interest among participating media.

Though many diverse approaches for interactive clouds ren-
dering exist, they can roughly be categorized as empirical and
physically-based. From the former group we mention the typical
billboard-based technique by Wang [42] used for instance in
Microsoft Flight Simulator 2004 or CryEngine2 [43].

On the other hand, many different paradigms have been taken
in the existing physically-based approaches. Riley et al. [38]
use the half-angle slicing technique of Kniss et al. [25] known
from the domain of volume visualization. The method, however,
is still semi-empirical and considers only the forward portion
of multiple scattering and a single light source. The concept of
Monte-Carlo illumination networks by Szirmay-Kalos et al. [41]
is more theoretically sound, its main drawback however is the
necessity to recalculate the entire network from scratch every
time the cloud density field changes. Yet another approach has
been taken by Bouthors et al. [3, 4] who analyse light behaviour
in plane-parallel homogeneous slabs and based on this analysis
design a series of ad-hoc functions to obtain illumination in the
rendered cloud. The method produces interesting results, it is
however limited to simple light sources and builds primarily on
theoretical assumptions rather than on actual observations of the
simulated environment.

Cloud photograph Simulation, anisotropic Simulation, isotropic

Figure 3: Anisotropic scattering is a defining visual property of clouds, caus-
ing above all the silver lining effect. Without correctly handling anisotropic
scattering it is difficult to reproduce this phenomenon.

Discussion. Generally, we observe that the existing methods
for rendering of participating media can be categorized in yet
another way. The first category are approaches that can very
rapidly simulate single scattering, but handle multiple scattering
either in a supplemental way or even not at all. On the other hand,
approaches that handle multiple scattering using lattice-based
propagation or diffusion techniques fail at reproducing low-order
or highly anisotropic effects (Fig. 3). The main difficulty of
clouds lies in the fact that their high scattering anisotropy makes

the transition from low-order to high-order scattering effects
very gradual (see Fig. 2), thus these effects need to be handled in
a consistent manner. The third group of hybrid methods that use
ray-based propagation of radiant energy, but cache this energy in
some way, has the potential to handle the described phenomenon.
Unfortunately, this is usually hindered by the use of spherical
harmonics to store the angular radiance distributions, destroying
any high-frequency illumination effects (or making the caching
process too costly as the number of basis coefficients needed
to represent increasing frequencies grows quadratically). To
remedy this situation is the main target of our work.

3. Method overview

This section provides an overview of our method. We first
introduce the physical model and assumptions we use (Sec. 3.1)
and then give a brief overview of the method itself (Sec. 3.2).

3.1. Model

The physical model that describes the propagation of light
through participating environments is mathematically described
by the radiative transfer equation (RTE) [7, 31]:

dL(x,ω)

dx
=−σt(x)L(x,ω)+σs(x)

∫
Ω4π

p(x,ω,ω ′)L(x,ω ′) dω
′.

RTE describes differential change of radiance L at a point in
space x in the direction ω . σt and σs are the extinction and
scattering cross sections of the simulated medium (in clouds
we consider σt = σs). The spherical function p is the phase
function; if p is the same for the entire medium the first parame-
ter x can be omitted. In addition, p is usually considered to be
rotationally symmetric around the incident direction ω and there-
fore becomes a 1D function of the angle between the incident
and the outgoing direction. We employ both of these assump-
tions and will therefore use the notation p(θ) interchangeably
with p(ω,ω ′). Since we do not consider emission in clouds our
formulation of RTE does not contain an emission term.

The classical volumetric photon mapping solves the RTE by
performing a random Monte Carlo walk through the medium.
This however requires the ability to determine the next location
where the simulated photon will interact with the medium.
To obtain this location in an unbiased manner we utilize the
Woodcock tracking technique [44]. Please refer to Appendix A
for its brief description.

The phase function model we employ is the standard formula-
tion by Henyey and Greenstein [16]:

pHG(θ |g) =
1

4π
· 1−g2

(1+g2−2gcosθ)3/2 (1)

where g∈ (−1,1) denotes the anisotropy of pHG. It is an average
weighted cosine of the scattered directions produced by any
given p:

g =
∫

Ω4π

p(θ)cosθ dω
′. (2)
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There are multiple reasons why we have decided to use the
Henyey-Greenstein function instead of a tabulated rigorous Mie
phase function (such as for instance in Bouthors et al. [3, 4]).
The Henyey-Greenstein function thanks to its closed analyti-
cal form is more portable, cheaper to evaluate and can be effi-
ciently importance-sampled. Moreover, we utilize its mathemat-
ical properties to represent the illumination in clouds as well
(Secs. 4.1.2 and 4.4). The main drawback of using this approxi-
mation is its inability to reproduce advanced scattering effects
occurring in clouds, e.g., fogbows and glories [4]. However,
these phenomena are comparatively rare and can be modelled
separately.

Assumptions. At this point we establish assumptions about the
environment we aim to simulate. We base these assumptions pri-
marily on actual observations of the simulated environment, and
later demonstrate how they are used to the method’s advantage.

• Illumination. Clouds are virtually always illuminated by a
single strong yet slowly-moving light source with one domi-
nant direction (the Sun or the Moon) and by additional slowly-
changing environmental light sources (the sky, street lights in
urbanized areas, etc.). Occurrences such as an airplane rapidly
flying through a cloud are sufficiently rare and we deem ac-
ceptable to neglect them. Mathematically, this assumption
can be expressed in the way that clouds are illuminated by
low-frequency light sources, and that both in temporal and
spatial domain.

• Mass distribution. Clouds are indeed dynamic media, as
their shape changes due to air convection. However, not only
is this process never very rapid, it is seldom even noticeable
for a human observer. Movement of whole clouds across the
sky due to wind is usually relatively slow as well.

Apart from these, no other assumptions are made by our ap-
proach. We allow for any type and number of light sources, as
long as there is one with a dominant radiant power and direction.
Even local light sources are acceptable, if they move slowly.
Similarly, we allow for arbitrary cloud shapes that can be repre-
sented by a 3D discrete density field. The source of this density
field can be arbitrary as well — it can be stored as a series of
volumetric animation frames in memory, or can result from a
dynamic cloud convection simulation. No precomputations need
to be performed on these data. And finally, we do not impose
any limitations on the observer orientation or movement.

3.2. Overview

The input to our approach is the scalar density field of the
simulated cloud, stored in a regular grid D(i, j,k) : N3 → R+

(see Fig. 4). Assuming a slowly changing environment we cache
illumination into another regular grid I(i, j,k) : N3→R4. Every
cell in I stores the RGB flux as well as one anisotropy coefficient
(Eq. 2) to model the light distribution (Sec. 4.1.2). The grid I is
updated progressively, so each cell stores a mix of the current
and several increasingly outdated values; however, as long as
our assumptions hold, the difference from the ideal solution will
be very small.
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Figure 4: Schematic view of our algorithm pipeline.

The caching data structure is a circular buffer of m (we use
m = 100) partial caches H0(i, j,k), . . . ,Hm−1(i, j,k) that com-
bine as

I(i, j,k) =
1
m

m−1

∑
l=0

Hl(i, j,k)

to the full cache. The spatial resolution of the cache I is much
lower than the one of the density field D to keep the amount
of consumed memory and the variance of I in low values. To
improve quality, before reconstructing the final image from I and
D using ray-marching we upsample I to a second high-resolution
cache J, which has the same resolution as D.

The global energy state of the cloud is represented by nt
photons, which are divided into m generations, each containing
ng = nt/m photons. In each frame f the algorithm performs the
following:

1. The flux of ng photons that are shot and traced through D is
stored into a new partial cache Hnew (Sec. 4.1).

2. The partial cache Hold = H f modm in the circular buffer be-
comes the old partial cache and we replace it with the new
partial cache Hnew as: I( f ) = I( f−1)−Hold+Hnew (Sec. 4.2).

3. The low-resolution cache I is upsampled to another cache J
using the density field D as a guidance signal (Sec. 4.3).

4. Ray-marching D and J produces the final image (Sec. 4.4).

In the following we present the details of each step.

4. Our Approach

In this section we describe temporally-coherent volumetric
photon mapping in more detail. We will describe it for a general
fine-grained parallel machine (our implementation uses CUDA).
Such a machine executes many parallel threads, can read and
write into buffers, read from special buffers called “textures”
that provide efficient one-, two- and three-dimensional linear
filtering, and can read and write to fast “local” memory.

At the beginning of each frame the cloud density field D
is updated and stored into a texture, e. g., using a simulation
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of cloud dynamics or by streaming the dataset from memory
on-the-fly.

4.1. Illumination

Illumination is computed by tracing photons (Sec. 4.1.1) in
the density field D and storing (Sec. 4.1.2) them into a new
partial cache Hnew. The spatial resolution of H is typically much
lower than of D: the number of its cells should not exceed 2400
(for a cubic grid this limits the resolution to 133) in order to
fit into the 48 kB of shared local memory available on current
GPUs.

4.1.1. Photon tracing
In every step, ng photons are shot from the Sun and the sky

(note that different number of photons may be traced in each
frame, e. g., if there is a need to balance time taken by other
tasks performed by the GPU; the only requirement is that these
photons carry the same flux, so that the energy state of the scene
remains consistent). First, they are attenuated due to atmospheric
scattering using a tabulated model [5, 9]. For photon propa-
gation, we adapt the photon marching technique presented by
Jarosz et al. [19]: for every photon a parallel thread is started and
runs in a while-loop that scatters and stores photons (Sec. 4.1.2)
until the photon leaves the volume. Instead of depositing pho-
tons in constant [19] or adaptively-sized [28] steps, we perform
randomly-sized steps – since we employ Woodcock tracking
(that itself performs randomly-spaced steps to generate interac-
tions with the medium) for obtaining free photon path through
the medium, we deposit photons at the locations where Wood-
cock tracking examines the currently generated event. This
essentially helps us to avoid two simultaneous stepping proce-
dures along the propagation ray. See Fig. 5 for an illustration of
this process.

The downside of such an approach is of course the potentially
higher variance of the solution. However, as we aggregate the
photon contributions into the grid cells (which are much larger
than the average mean free path in the medium) this effect will
likely be very small.

x1

x2

x3
virtual scattering event
real scattering event
photon storing
low transmittance threshold
medium boundary

Figure 5: The scheme of our photon beam propagation procedure. Only the
orange-framed grid cells receive photon energy. For details please refer to
Appendix A.

In addition, the original photon marching technique traces
each photon beam up to the medium boundary. Such an ap-
proach is indeed suitable for optically thin media such as fog
and certain kinds of smoke which Jarosz et al. [19] use in their
demonstrations. However, in optically thick environments, such
as clouds, this approach invests large amounts of computational

effort into simulating and storing photons that—due to low
medium transmittance—carry only very little energy. To over-
come this problem we simply stop tracing a beam if its trans-
mittance gets below a small threshold. Although this of course
introduces a slight (controllable) bias, our experiments show that
the resulting speed-up can even reach and order of magnitude.

Further, we use the similarity theory [46] to speed up the
tracing process. We pose a fixed threshold t = 0.05 and if the cu-
mulated scattering anisotropy of a traced photon gets below t, we
switch to the reduced scattering cross section1 σ ′s = σs

√
(1−g)

and isotropic phase function. In our case it is easy to determine
this, because the angular distribution of light scattered i times
corresponds to i self-convolutions of the phase function, which
for Henyey-Greenstein function in turn corresponds to just using
gi instead of g as its anisotropy parameter [32]. Therefore for
a given photon we switch to σ ′s and isotropic scattering after
i = log(t)/ log(|g|) bounces.

3 2

1 1

2 3

pHG(0.05)

y1

Figure 6: Comparison between pHG with g = 0.05 and the first order spherical
harmonic function y1. The dashed orange plot represents the difference between
these two functions.

The choice of t is not arbitrary; according to the derivation
of the similarity theory [46] the similarity relations are valid if
the radiance anisotropy is linear, i. e., if it can be expressed by
spherical harmonic functions with the maximum degree of one.
Except for the case of g = 0 this is unfortunately not possible for
pHG. We can therefore aim at least for a difference within some
error threshold (see Fig. 6). The error of 2 % traditionally used in
computer graphics corresponds roughly to g = 0.1; however, we
need to reach a lower error margin as the error accumulates with
each scattering bounce. Using t = 0.05 ensures an approximately
five times lower error margin, which we deem sufficient for our
application.

4.1.2. Photon storing
The classical (volumetric) photon mapping [21] and volume

irradiance caching [18] both have two shortcomings that hin-
der their application to interactive cloud rendering: maintaining
and querying of complex spatial data structures and limited sup-
port for highly-anisotropic scattering due to spherical harmonic
functions used for the caching. Our approach overcomes both
limitations by using a simple regular grid and a different basis
function.

1We would like to point to the fact that this formula is different from the one
used in many other computer graphics papers; the traditionally used one does
not contain the square root and is incorrect according to the original derivation
of Wyman et al. [46].
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Regular photon grids. Classic volumetric photon mapping
stores photons into hierarchical data-structures, such as kD-trees,
that can adaptively resolve fine spatial details in the photon dis-
tribution as found, e. g., in occlusions or caustics in surface
lighting. For clouds however, fine spatial details are usually
not that prominent. On the other hand, inserting photons into a
complex structure and performing an adaptive density estimation
is less suitable for contemporary massively-parallel machines
which we target. We therefore suggest to trade adaptivity for
simplicity and revert to a plain regular grid in which the illumina-
tion is accumulated, similar to irradiance volumes [15] (also see
Fig. 5). This grid H is sufficiently small to fit into local memory
shared by a block of threads executed on one multi-processor.
Storing a photon into such a three-dimensional grid is now as
efficient as splatting it in two dimensions [33]. Also, as atomic
operations are necessary to perform the accumulation properly,
for the fast local shared memory we found them not to cause
virtually any additional overhead.

Sec. 4.3 explains how an upsampling scheme can be used to
improve the effective spatial resolution of the cache.

Henyey-Greenstein basis. Approaches that cache the illumina-
tion information inside the volume [18, 34] use spherical har-
monics to approximate the radiance function. This is suitable for
isotropic and moderately anisotropic media, but not for strongly
forward-scattering media such as clouds, where a very high
number of SH coefficients is required. This is problematic, as
the strong forward scattering in clouds is visually important for
their appearance, mainly causing the well known silver lining
phenomenon (Fig. 3).

(a) (b) (c)

Figure 7: Local Henyey-Greenstein lobes – (b) shows one slice of the greyscale-
encoded anisotropy coefficients of the illumination solution that correspond to
the marked region on the cloud (a). The exact shape of the lobes in the cache
locations is shown in (c). The light in (c) is coming from the left.

To overcome this limitation we propose to represent caches
using the Henyey-Greenstein function (Eq. 1). Evidence
shows [17] that in situations where most energy in scene comes
from a single direction then also a majority of scattered light will
intuitively propagate in a very similar direction, which will be
especially true for clouds and other media with high scattering
anisotropy. Thus, when storing a photon into a cache cell, in
addition to its radiant flux we also accumulate its cosine with
respect to the dominant light direction. This only requires to
store four values (an RGB-triple for flux and a single cosine
value) per cell and the projection consists of evaluating just a
single dot product per photon. In addition we count the number
of photons arriving at each cell, and after all photons are shot,

divide the accumulated cosines by the number of contributing
photons for a proper normalization. The value obtained this way
is anisotropy factor for the given cache cell (Eq. 2). We can
then directly use the Henyey-Greenstein function to represent
the per-cell angular illumination distribution (Fig. 7).

Photons which are not emitted by the Sun but come from the
sky are not projected into the HG basis. As they—in difference
from the Sun photons—arrive from a wide distribution of di-
rections, their angular contribution to the caches will arguably
be close to uniform. In case this does not hold (for instance if
the sky is much brighter than the ground reflection) it is easy
to add an additional HG lobe and obtain the reference direction
by weighting the sphere of directions by the relative energy
contributions of the environmental lighting.

4.2. Update

After computing the cloud illumination using the photon trac-
ing explained before, the partial cache Hnew is added to the
global solution I and the outdated cache Hold is removed. This
is done using a simple parallel addition and subtraction over all
cache cells.

4.3. Upsampling

At this point the cache I could already be used for rendering.
However, its spatial resolution is usually much lower than the
one of D. This was required to fit it into shared local memory and
to reduce variance of the illumination solution (see Appendix B),
as well as the overall memory footprint. This, however, has two
problems. First, the low resolution of I can cause a substantial
blur of the light energy and cause interpolation artefacts. Second,
as the relation between the anisotropy factor g and the resulting
lobe shape is quite nonlinear, linearly interpolating it during
the cache fetching would sometimes produce incorrect angular
distributions of the scattered radiance.

To avoid these limitations, we propose to upsample I to J, a
cache with the same spatial resolution as D (Fig. 8). One possible
approach to this is to apply the joint bilateral upsampling [26].
The idea of the joint bilateral upsampling is to use a bilateral
filter consisting of two parts: a traditional domain filter, e. g.,
Gaussian, and a range filter operating above a guidance signal,
which provides an additional regulatory mechanism over the
filtering process. In our case it is very natural to use D as
the guidance signal. This approach produces empirically good
results, which is not surprising as it can be assumed that in
clouds the density field D and the scattered radiance function
Lout (Sec. 4.4) will spatially correlate on a local scale (roughly
within one photon mean free path distance).

The main issue with the joint bilateral upsampling is that it
employs Gaussian filters, as mentioned above. This requires
specification of their parameters – standard deviations and, in
case of their truncated versions, also effective radii. It is not
necessarily clear what these values should be, and they can
moreover vary not only for different clouds, but also for a single
cloud during its evolution. Since they also do not directly relate
to the physical properties of clouds, these can not be used to
derive them in a natural way either.
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I D+ J D+ noise+J D+

Figure 8: Upsampling of the coarse illumination solution I to J removes a
majority of artefacts caused by linear interpolation and incorrect handling of
the radiance anisotropy. The additional noise perturbation helps to break the
unnatural smoothness of the underlying density field D.

To overcome this problem it is useful to exploit the additional
knowledge we have available here, both in terms of the working
data and the fact that the upsampled quantities have direct phys-
ical meanings. Based on this knowledge we can then design a
more suitable physically-plausible upsampling filter.

At the end of the tracing process I contains two different
quantities that need to be upsampled: radiant energy density and
its angular distribution represented by the HG anisotropy factor.

Radiant energy. From the RTE we can see that the radiant en-
ergy L is locally proportional to the medium scattering cross
section, which in turn is linearly dependent on the density field
D. Our proposition for its upsampling is using the joint bilateral
filter fL as follows. The domain filter needs to take into account
that L is exponentially attenuated in space due to the medium
transmittance. The range filter, which naturally uses D as the

guidance signal, has to incorporate the linear dependence of the
scattered L on the medium density. Mathematically this can be
written as follows:

fL(dD,dR|τ,r) = ftexp(dD|τ,r) · flin(dR)

ftexp(d|λ ,r) = max

(
f ′texp(d|λ ,r)− f ′texp(r|λ ,r)

1− r · f ′texp(r|λ ,r)
,0

)

f ′texp(d|λ ,r) =
λ · exp(−λd)
1− exp(−λ r)

flin(d) = max(1−d,0)

where dD and dR are the distances in the spatial and range do-
main respectively, τ is the optical thickness in the medium and
r is the effective filtering radius (please see below for the defi-
nition of these parameters). The reason for this formulation is
the infinite support of the exponential distribution (which should
correctly be used). As we are using only a local neighbourhood
for filtering, using the exponential distribution would introduce
discontinuities in the upsampled solution J. We therefore use
a truncated exponential distribution ftexp, which we define by
normalizing the thresholded exponential distribution2 f ′texp.

Radiance anisotropy. As already mentioned the upsampling of
the anisotropy g′ has to take into account the nonlinear relation
between its value and the distribution it represents. However,
there is no straightforward way to compensate for this nonlinear-
ity without an additional information about the medium.

Sec. 4.1.1 describes how the radiance anisotropy changes by
light scattering – when the light progresses into the medium, its
anisotropy decreases with the increasing number of scattering
orders. The anisotropy at some point will therefore well correlate
with the average scattering order at that point. This quantity,
which we call penetration depth γ , can easily be obtained during
the tracing process; we track the number of times a traced photon
scattered, and store this value along with the photon’s energy
and average cosine. γ already is close to linear, and thus can
be linearly interpolated from the low-resolution grid during the
upsampling. The upsampling filter for g′ can then be defined as

fg′(δ |g) = gδ

where δ is the difference of penetration depth γ between the
upsampled point and the point from which we are extrapolating
the anisotropy value, and g is the medium scattering anisotropy.
The logic behind this filter is exactly the same as in the similarity
heuristic in Sec. 4.1.1. Note that δ can also have a negative value,
which means that if the upsampled point has a lower penetration
depth than the extrapolated point, its anisotropy will be higher.

Final upsampling. The upsampling procedure itself then iter-
ates through a local neighbourhood ∆ of the upsampled point,
extrapolating the contributions from the neighbouring points to

2 f ′texp parametrized by r is an exponential distribution modified to have a
unit integral on the interval 〈0,r〉.
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its radiant energy and anisotropy:

JL(p) =
∑q∈∆ IL(q) ·wL

∑q∈∆ wL
Jg′(p) =

∑q∈∆ Ig′(q) ·wg′ ·wL

∑q∈∆ wg′ ·wL

wL = fL(dD,dR|τ,r) wg′ = fg′(δ |g)

and dD = ‖p−q‖, dR = |D(p)−D(q)|, δ = Iγ(p)− Iγ(q), τ =
σs · (D(p)−D(q))/2 and r is the shortest distance from the
centre of ∆ to its boundary.

It can be seen that we multiply the weights wg′ for upsampling
the anisotropy by wL. This is because the points in the cache
which contribute more energy to the upsampled point should
also have a higher overall impact on its resulting anisotropy.

The upsampling maps well to GPUs – it is a purely local
operation executed in parallel exactly once per each upsampled
solution cell. According to our experiments using a 33 neigh-
bourhood already produces good results. The upsampling could
also be performed directly during the ray-marching, but we
found it to be much faster when done in an intermediate step,
as this allows more coherent reading of I and D and no work is
duplicated.

4.4. Ray-marching

To visualize clouds we use the standard ray-marching [28]
with early-exit at 2 % transmittance threshold. For every pixel,
a thread is started that marches D and J, accumulates radiance
from J (see below) and transmittance T from D in front-to-back
order, applies compositing accordingly and terminates when T
is less than 2 %.

To keep the memory consumption in manageable levels we
use only moderate resolutions for D (see Table 1). We then
increase the amount of detail by procedural perturbation of the
texture coordinates for fetching D and J by three octaves of
simple vector noise stored in a small 3D texture, similar to
Kniss et al. [25] (Fig. 8).

For most clouds it is not necessary to ray-march them in
full screen resolution, as the frequency of the applied noise is
still lower than the screen sampling frequency (see Fig. 9, left).
Therefore in all cases we render the cloud in half the screen
resolution, in both dimensions.

In addition, because of the good temporal coherency of the
environment, it is wasteful to conservatively ray-march the cloud
volume in every frame. We have therefore implemented an
impostor caching to avoid this. Our proposition is to use several
empirical criteria, which, if any is exceeded, indicate that the
cloud impostor should be updated:

1. Angle criterion – if the relative angle under which the cloud
is seen changes by more than 5 degrees.

2. Distance criterion – if the relative distance from the cloud
changes by more than 20 %.

3. Illumination criterion – if the photon map has been updated
by more than 4 % (with respect its update period m).

4. Animation criterion – if the cloud shape changed signifi-
cantly (this is of course dependent on the cloud evolution
speed and needs to be tuned individually).

Figure 9: Left: Cirrocumulus altocumulus rendered at full resolution (top, ray-
marching time 77 ms) and half resolution (bottom, ray-marching time 21 ms).
Right: clouds rendered at night.

m
edium

ω

particle

Lout(ω) =
 [Lin * pHG(g)](ω)

Lin = pHG(g')

g' 
= 0.

5

g = 0.9

m
edium

ω

particle

Lout(ω) =
pHG(θ,g.g')

Lout = pHG(g.g')

g.g
' =

 0.
45

θ

Figure 10: Two possible ways of reconstructing the illumination information
represented by the Henyey-Greenstein function. Left: the yellow area represents
the value of Lout(ω) obtained by convolving Lin and pHG(g). Right: the yellow
segment is directly the value of Lout(ω).

As will be seen in Sec. 5, the two above optimizations increase
the ray-marching speed by about an order of magnitude, and that
without causing visual degradation.

Reconstruction. The illumination reconstruction is straightfor-
ward at this moment. J contains in each cell RGB intensities
of the directional and environmental illumination energy and
the local directional anisotropy factor g′, which represents the
angular distribution of this energy.

It is however important to note that since we use the incident
photon direction for the projection step during the photon tracing
procedure (Sec. 4.1.1), the value of g′ represents the incident
radiance function Lin at the cache location. To obtain the desired
outgoing radiance value Lout(ω) for a given view direction ω it
is necessary to convolve Lin (represented by pHG(g′)) with the
medium phase function centred around the viewing direction
(Fig. 10, left). Instead of computing the convolution directly
(e. g., numerically) we once more utilize the self-convolution
property of the Henyey-Greenstein function (Sec. 4.1.1) – and
simply evaluate pHG(θ ,g ·g′), where g is the global anisotropy
factor used for scattering simulation in the cloud (Fig. 10, right).
This is mathematically equivalent (see Appendix C).

An additional benefit of our Henyey-Greenstein representation
is that the angular illumination information represented this way
reproduces the scattering anisotropy in clouds well, but at the
same time is smooth. This prevents emergence of high-frequency
noise, which would look unnatural in clouds.
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Figure 11: Illumination obsolescence in Cumulus congestus and Altostratus undulatus in two different times of day. The obsolete cases were captured during a
continuous Sun movement of 0.5 deg / s.

5. Results and Discussion

Our tests have been conducted on a laptop PC with 2 GHz
Intel Core i7-2630QM CPU, NVidia GTX 485 Mobile GPU and
Windows 7 64-bit. In all our tests we use the following global set-
tings: 819 k photon beams, m= 100 partial caches, ray-marching
step size of d/300 (where d is the cloud bounding box diagonal)
and a screen resolution of 1920×1200. All density fields beside
the PBRT smoke were modelled by hand as meshes and vox-
elized into 3D grids. We have performed three kinds of tests –
method performance measurements, analysis of the illumination
outdating during scene state change, and rendering quality in
dependence on the photon map resolution.

Performance. We have used three datasets for timing measure-
ments: static datasets of Cumulus congestus (dense concentrated
cloud) and Altostratus undulatus (sparse wavy cloud) and the an-
imated smoke dataset available in PBRT renderer (pbrt.org).
The scene settings and measured timings are summarized in
Table 1. Figs. 1, 9 (right) and 13 show the results of our method,
including the measured datasets.

As Table 1 shows, the photon tracing costs are in the order of
milliseconds, since only a low number of photon beams is traced
per frame (about 8.2 k in our tests). Under such conditions, the
ray-marching becomes the most expensive step, if performed
conservatively in each frame. The impostor caching decreases
the ray-marching costs by the factor of three, on average, which
then also decreases the total rendering time significantly.

Illumination obsolescence. Since our method amortizes the illu-
mination computation there is a various level of obsolescence
in the partial solutions. To show that our update process is
sufficiently fast we compare clouds rendered under constant
light source movement against clouds under static illumination.
Fig. 11 shows the resulting images. The maximal luminance
difference was about 1.5 % throughout all cases, mostly due
to a residual low-frequency photon noise. Please note that al-
though the Sun’s angular speed was only 0.5 deg / s this is still
120 times faster than the real speed and several times faster than
is commonly used in interactive 3D applications (for instance
the common time ratio in FPS games is 1 game-time hour to
2 real-time minutes, which corresponds to an angular speed of
0.125 deg / s).

Photon map resolution. Fig. 12 shows the Cumulus congestus
dataset rendered with three different resolutions of the photon
map: the resolution used in all other measurements, and two
others, one with 8-times less and one with 8-times more cells.
The photon tracing times naturally differ as well, because (as
Appendix B describes) different amounts of photon beams have
to be used to obtain coherent results. It can however be seen
that for lower numbers of photon beams the simulation time
does not scale down linearly. This is because if too few beams
are traced simultaneously, the GPU utilization becomes too low.
We therefore conclude that although the quality degrades rather
gracefully with decreasing photon map resolution (mainly thanks
to the upsampling stage), from a certain point doing so does not
pay off anymore.

6. Conclusion and Future Work

We have presented an interactive cloud rendering method. Our
algorithm utilizes a temporally-coherent illumination caching
process to amortize the simulation costs across multiple frames.
Our novel representation of angular illumination distribution in-
side clouds enables us to reproduce the characteristic appearance
of many clouds, while keeping the computational and storage
costs relatively modest. The algorithm maps very well to the ar-
chitecture of modern graphics hardware, and hence all its major
steps can be evaluated in parallel on the GPU.

The proposed method improves on the existing techniques in
multiple regards. We build on realistic observations about the
typical environment of clouds and use these to our advantage.
Our method is not limited to any particular cloud type or any
subset of possible light paths in clouds, and can handle the
important light sources typical for the simulated environment.
We consider all physically plausible properties of clouds and the
entire method is physically meaningful to a large extent.

The possible future work includes several directions. First,
there is need for a multi-resolution scheme to enable simulation
of multiple clouds at once without linear decrease in speed.
Second, the algorithm might possibly be adapted to other types
of participating media by relaxing or even completely dropping
the specific assumptions about the simulated environment. For
example, multiple HG lobes could be used to represent more
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Table 1: Performance of our algorithm in various stages. All other steps took less than 1ms to execute, thus we do not list them.

Dataset D resolution D size (km) σs (m-1) g I resolution
Altostratus undulatus 70×22×71 1.4×0.4×1.4 0.03 0.96 15×10×15
Cumulus congestus 48×62×90 0.9×1.2×1.8 0.03 0.96 10×12×18
PBRT smoke (anim.) 100×40×100 2×0.8×2 0.03 0.96 15×10×15

Dataset Photon tracing Upsampling
Ray-marching Ray-marching Total
(conservative) (impostors) (cons. / imp.)

Altostratus undulatus 6.1 ms 2.3 ms 22.2 ms 7.4 ms 30.6 ms / 15.8 ms
Cumulus congestus 9.1 ms 3.0 ms 20.7 ms 7.9 ms 32.8 ms / 20.0 ms
PBRT smoke (anim.) 7.8 ms 3.3 ms 33.2 ms 9.5 ms 44.3 ms / 20.6 ms

Figure 12: Quality comparison for different photon map resolutions, m = 100. Left: 270 cells (0.5 MB video memory), 102 k photon beams, 4.8 ms per frame. Middle:
2080 cells (4.2 MB video memory), 819 k photon beams, 9.1 ms per frame. Right: 16640 cells (33.8 MB video memory), 4096 k photon beams, 33.4 ms per frame.
The middle image uses the settings used to generate all the other results for the particular dataset throughout the paper.

complex illumination distributions than the one dealt with in the
described approach. It remains to be seen to what extent is this
feasible.
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Appendix A. Woodcock tracking

One of the core operations performed by volumetric photon
mapping is finding the distance to a next scattering or absorption
event. We utilize Woodcock tracking to do this in an unbiased
manner. Let us assume the last scattering event occurred at xk
and the generated (normalized) scattering direction according
to p is ω . The next interaction will take place at xk+1 = xk +
devent ·ω . For heterogeneous media, to obtain the distance devent
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one needs to solve the implicit equation∫ devent

0
σt(xk + t ·ω) dt =− ln(1−ξ )

where ξ is an uniformly distributed unit random variable.
Basically, Woodcock tracking steps along the photon propaga-

tion direction using steps with random exponentially-distributed
length with the mean 1/σT (where σT is the peak extinction
cross section value throughout the entire medium). The tech-
nique then in each step probabilistically decides if an interaction
takes place at the given position (i. e., if the currently generated
event is real or just virtual), so that the distance to the generated
interaction event has the mean value of devent as defined the
above equation. Finally, Russian roulette with the probability of
σs(xk+1)/σt(xk+1) is used to decide if the generated interaction
is scattering or absorption (this last step is skipped for clouds as
σt = σs). For more details please refer to Raab et al. [37].

Appendix B. Temporal coherence

In order to avoid low frequency temporal noise in the ren-
dered images it is necessary to maintain a low variance of the
illumination solution I. As the convergence rate of a Monte
Carlo estimate is O(1/

√
n), to maintain 2 % error in each grid

cell the total number of photons in scene nt needs to be set so
that each cell in I receives at least around n≈ 2500 photons (to-
gether from all partial caches H0, . . . ,Hm−1). Since the photon
budget is roughly fixed, the grid resolution needs to be adjusted
accordingly to fulfill this criterion (in addition to the limitation
imposed by the available shared memory of GPUs, see Sec. 4.1).

Note however that it is necessary to differentiate between
photon beams and individual photons — a single photon beam
can dispose many photons into the grid (Fig. 5). There is no
precise way to determine the ratio between these two for a
particular nontrivial dataset, but a good initial approximation is
easily derived from the scattering cross section σs, the average
density of the utilized dataset and its spatial dimensions.

Appendix C. Illumination reconstruction

Recalling the radiative transport equation described in
Sec. 3.1:

dL(x,ω)

dx
=−σt(x)L(x,ω)+σs(x)

∫
Ω4π

p(x,ω,ω ′)L(x,ω ′) dω
′

it can be seen from the definition that the integral term on the
right is a spherical convolution between the incident radiance
(hereinafter Lin) and the medium phase function p at x.

In our approach we represent Lin by approximating the in-
cident photons’ flux by the pHG basis function by averaging
their cosine values in respect to the dominant Sun direction,
thus producing an anisotropy factor g′ representing the angular
distribution of scattered photons at x (Sec. 4.1.2). Therefore
Lin ≈ pHG(g′) and the integral term becomes∫

Ω4π

p(ω,ω ′)pHG(ω
′|g′) dω

′,

neglecting the location from now on. Note that the orientation of
pHG(g′) in space is given by the dominant light direction which
is constant for the entire cloud (although nothing prevents the
orientation from varying in space by simply storing the direction
separately for each cell).

If the used medium phase function is also pHG parametrized
by some g, then utilizing the self convolution property of
pHG [32] (Sec. 4.1.1) we can write[∫

Ω4π

pHG(ω,ω ′|g)pHG(ω
′|g′) dω

′
]
(ω) = pHG(ω|g ·g′).

Thus pHG(g ·g′) represents the outgoing radiance function:

Lout ≈ pHG(g ·g′).
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