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Figure 1: Complex caustic resulting from chromatic dispersion on a brilliant-cut gemstone with a very wide refractive index
range (from 2.2 for the violet end to 1.2 for the red end of the spectrum). We use a standard unbiased MC solution (light tracing)
with stochastic spectral sampling as a reference, which produces very noisy results and does not fully converge even after a high
number of passes. Spectral ray differentials lead to a smooth solution and an order of magnitude faster convergence, the solution
is however biased, which is manifested as blur of the caustic features (cf. insets below). Our proposed progressive spectral
differentials converge almost as fast and lead to an unbiased solution in the limit.

Abstract
Light travelling though refractive objects can lead to beautiful colourful illumination patterns resulting from
dispersion on the object interfaces. While this can be accurately simulated by stochastic Monte-Carlo methods,
their application is costly and leads to significant chromatic noise. This is greatly improved by applying spectral
ray differentials, however, at the cost of introducing bias into the solution. We propose progressive spectral ray
differentials, adapting concepts from other progressive Monte-Carlo methods. Our approach takes full advantage of
the variance-reduction properties of spectral ray differentials but progressively converges to the correct, unbiased
solution in the limit.
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1. Introduction

Interaction of light with a refractive material interface (e. g.,
glass) causes a change of its initial direction, leading to inter-
esting phenomena such as caustics. If the material is disper-
sive this direction is further wavelength-dependent, causing
chromatic rainbow-like phenomena. These are often visually
attractive, but just as often undesired as well – especially
in optical systems where they cause chromatic aberrations,
degrading their performance. It is therefore important to un-
derstand and accurately simulate these phenomena.

Stochastic Monte-Carlo methods can be trivially extended
to support dispersion, albeit dispersive caustics as the most
representative phenomenon from this category are handled
better by the forward-tracing methods [Arv86, Jen01], than
by the backward-tracing ones [Kaj86, Tho86]. Regardless,
spectral rendering introduces an additional dimension (the
spectral domain) into the rendering equation. The prevalent
strategies to sample the spectrum are stochastic sampling,
which leads to chromatic noise, and regular sampling, which
causes aliasing artifacts [EBR∗14, WND∗14]. In general this
also introduces computational overhead, as more samples
are required for a solution to converge. Methods that cache
illumination, such as photon mapping, also require more
memory to store the spectral information [Lai07].

To alleviate this issue the concept of spectral ray differen-
tials (SRD hereinafter) has recently been proposed [EBR∗14].
SRD extend the widely-adopted framework of ray differen-
tials introduced by Igehy [Ige99], which has since been gen-
eralized to paths and the distribution phenomena associated
with them [SW01, SFES07, FD09]. All ray differentials, in-
cluding the spectral variant, trace partial derivatives of a ray
within a certain domain. A first-order approximation then
uses this information for a better reconstruction of a given
phenomenon (dispersion in case of SRD). However, applying
the first-order approximation introduces bias into the solution;
this is precisely the problem which we aim to resolve.

Reducing bias in global illumination solvers has naturally
received significant attention. Arguably the most prominent
example is photon mapping [Jen01], which can produce an
unbiased solution but only if an infinite number of photons
be stored. To resolve this limitation the progressive photon
mapping was proposed by Hachisuka et al. [HOJ08, HJ09],
and later improved to remove the need of storing and
maintaining local photon statistics [KZ11]. Furthermore,
Jarosz et al. [JNT∗11] extended this framework to the vol-
umetric photon beam estimation. Photon mapping suffers
from bias because its density estimation takes place in a
region of a certain finite size around the point of interest.
The central idea of progressive methods is to gradually de-
crease the size of this region so that the bias diminishes with
increasing number of traced photons. An added value that
progressiveness can provide is an interactive manipulation
and feedback [LSK∗07, DKL10], allowing, for instance, fast
changes to the scene parametrization.
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Figure 2: (a) Refraction for a single monochromatic ray and
(b) λ-dependent dispersive refraction of three spectral rays.

We propose progressive spectral ray differentials as an
effort to remove the bias caused by the first-order approxi-
mation in SRD. The basic idea is, in analogy with progres-
sive photon mapping, to decrease the reconstruction scale of
SRD with increasing number of illumination samples that are
traced though the scene. Specifically, we

• combine the probabilistic progressive photon mapping
framework [KZ11, JNT∗11] with spectral ray differen-
tials [EBR∗14] (Sec. 3), and

• demonstrate the ability of this approach to converge to a
corresponding unbiased Monte-Carlo solution, with spe-
cific focus on dispersive caustics (Sec. 4).

2. Overview

In this section we briefly summarize the physics of dispersion
and rephrase the concepts of spectral ray differentials and
progressive rendering methods to provide background to our
work.

Refraction and dispersion A light ray hitting an interface
of a dielectric object is partially refracted (according to Fres-
nel’s law). This changes its direction d and additionally
causes its spectral components to spread (disperse) in case
the index of refraction (IOR) of the object depends on the
wavelength of the light in vacuum λ. According to Snell’s
law the refracted direction d′ will be

d′ = ηd−µn, where

µ = η(d ·n)+
√

1−η2 +η2 (d ·n)2

Here, η is the ratio of the λ-dependent refractive indices of
the original and the entered medium, and n is the interface
normal. Fig. 2 illustrates this relationship.

Spectral ray differentials Given a spectral ray R(λ) =
(p,d) defined by its position p and direction d its spectral
differential is a pair of partial derivatives ∂p

∂λ
and ∂d

∂λ
. This

information is traced with the ray itself and updated on every
transport, reflection or refraction event (see Fig. 3). The clas-
sic ray differentials [Ige99] can be used for the transport and
reflection directly, since these interactions are λ-independent.
For refraction, differentiating Snell’s law yields the following
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Figure 3: Comparison of the classic (left half) and spectral (right half) ray differentials. Classic differentials define the change of
ray in respect to a spatial coordinate (which can relate to an initial position on the image plane or a light source), while spectral
differentials in respect to a position in the spectrum (in other words, wavelength). Reproduced with permission from [EBR∗14].

expression:

∂d′

∂λ
=

∂η

∂λ
d+η

∂d
∂λ
− ∂µ

∂λ
n−µ

∂n
∂λ

(1)

The derivative ∂µ
∂λ

is defined in Appendix A for clarity. The
differential of η depends on the model used to derive the λ-
dependent material IOR; the expressions for several standard
models are covered by [EBR∗14]. On the other hand the
normal differential ∂n

∂λ
relates only to the surface geometry

and therefore is sufficiently described by Igehy [Ige99].

Contrary to the directional differential, the positional differ-
ential ∂p

∂λ
is not influenced by refraction, since, obviously, the

interaction does not displace the ray position. As described
by the classic ray differentials the differential of position
changes only during transport (i. e., when the ray travels
through empty space).

Progressive rendering On the high level the premise of all
progressive methods is to rapidly produce a coarse solution
and then progressively refine it until a certain quality is met.
Progressiveness is a natural part of most unbiased rendering
algorithms (e. g., in path tracing it amounts to simply tracing
more samples). In biased algorithms, however, additional
considerations are necessary to ensure that the bias decreases
over time and the solution converges correctly.

We opted to employ the probabilistic framework of Knaus
and Zwicker [KZ11] and Jarosz et al. [JNT∗11] due to its
simplicity and general applicability. Here it is assumed that
the rendering algorithm proceeds in passes; each pass cor-
responds to tracing a fixed-sized, relatively small batch of
samples. These are then continually averaged, producing a
converging solution.

Denoting the error of pass i as εi, the average error after N
passes is εN = 1

N ∑
N
i=1 εi. Since each pass is assumed to be

independent, the errors εi can be interpreted as realizations
of a random variable εN . The variance (noise) and expected
value (bias) of εN can then be expressed as

Var[εN ] =
1

N2

N

∑
i=1

Var[εi] and E[εN ] =
1
N

N

∑
i=1

E[εi].

An algorithm converges to a stable solution if Var[εN ]→ 0

as N →∞. The main difference between unbiased and bi-
ased methods is that the average error E[εN ] = 0 in unbiased
methods at any point during the solution computation; for
biased methods this does not hold. However the bias in ap-
proaches such as progressive photon mapping is consistent,
which means that also E[εN ]→ 0 as N approaches infinity
and therefore the result converges to the true unbiased solu-
tion. This is achieved by decreasing the size of the density
estimation region in each pass by a small factor; this of course
increases the variance of each pass Var[εi], however the over-
all variance of the solution Var[εN ] still decreases.

Despite unbiased approaches being mathematically supe-
rior to the biased ones, often in practice the latter are preferred.
The reason is their usually better robustness, meaning that the
actual error of the solution εN tends to be smaller in biased
algorithms, albeit its expected value E[εN ] is non-zero. As we
will demonstrate, this is also the case in dispersion rendering
and the primary motivation to use spectral ray differentials in
a progressive manner.

3. Progressive Spectral Ray Differentials

The application of spectral ray differentials consists of two
stages: tracing and reconstruction. During the tracing stage
the differential, a pair of 3D vectors ( ∂p

∂λ
, ∂d

∂λ
) associated with

the ray R(λ) = (p,d), is maintained as summarized in Sec. 2.
The reconstruction step then uses the differential to make
predictions about the spatial ray changes in dependence on
changes in its spectral coordinate λ. The spatial displacement
is obtained by applying the first-order approximation:

R(λ+∆λ)−R(λ)≈ ∆λ
∂R(λ)

∂λ
=: ∆R (2)

This defines a linear 1D footprint of the sample, with the spa-
tial extent between (p−∆p) and (p+∆p). Splatting of line
primitives is one way to reconstruct such samples [EBR∗14].

Note that ∆λ acts as a user-controlled parameter here. Its
increase will enhance the variance reduction of SRD but
also increase bias, since this scales up the filter footprint.
And, vice-versa, if ∆λ→ 0 then the sample footprint shrinks,
down to unbiased point estimates at ∆λ= 0. Performing this
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shrinking automatically is obviously the key ingredient to
enable progressive rendering with spectral ray differentials.

Estimate Regardless of the specific reconstruction proce-
dure, the radiance L in the direction dx within the sample
footprint can be estimated as

L(px,dx,∆λ)≈ k∆λ(u) ·γ, (3)

where px lies on the line between (p−∆p) and (p+∆p).
Eq. 3 expresses the reconstructed radiance as a kernel esti-
mate from the sample contribution γ (which combines the
flux carried by the sample modulated by the surface BRDF
and geometry terms). The kernel k∆λ(u) with the support size
of ∆λ depends on the distance u = ‖p−px‖. Photon mapping
traditionally uses the Gaussian kernel, although in the context
of SRD a simpler box kernel k∆λ(u) =

H(u+∆λ)−H(u−∆λ)
2·∆λ

proves sufficient [EBR∗14].

The error εL of the estimate provided by Eq. 3 can be
stated explicitly as the difference between the estimated and
the true radiance (at a given position and direction):

L(px,dx) = L(px,dx,∆λ)−εL(∆λ) (4)

Analysing the statistical behaviour of εL in dependence on
∆λ is the key step to derive the progressive update of ∆λ.

Error analysis Thanks to the formulation of the estimate
and error in Eq. 3 and Eq. 4 we can now directly apply the
results of the one-dimensional probabilistic framework of
Jarosz et al. [JNT∗11]. The primary result of their analysis are
estimates for the expected value and the variance of εL(∆λ):

E[εL(∆λ)]≈ ∆λ ·E[γ] ·C1 (5)

Var[εL(∆λ)]≈
(Var[γ]+E[γ]2) ·C2

∆λ
(6)

Here C1 and C2 are constants that depend on the specific ker-
nel shape and sampling strategy. These estimates are derived
for reconstructing a single sample at a given query location,
but it can be shown that they also generalize to a combined
reconstruction from multiple samples with different size. For
additional details please refer to [JNT∗11].

The most important conclusion to draw from Eq. 5 and
Eq. 6 is the linear relationship between the reconstruction
scale ∆λ and the resulting error characteristics. Specifically
if ∆λ decreases than the expected error will decrease linearly
while its variance will increase linearly. The first relation-
ship is necessary for the progressive solution to consistently
converge, while the increasing variance will be compensated
for by the increasing overall number of samples constituting
the solution. As will be shown next the proper balance be-
tween these two relationships is achieved when ∆λ decreases
sub-linearly.

Progressive update of ∆λ Under the conditions described
previously, Knaus and Zwicker show [KZ11] that a progres-
sive convergence can be achieved by imposing the following

ratio of variance between successive passes:

Var[εi+1]

Var[εi]
=

i+1
i+α

, (7)

where α ∈ [0,1] is a user parameter controlling how steep the
progression should be. Due to the inverse proportion between
the variance and the reconstruction scale ∆λ (Eq. 6) we get
an update rule for the reconstruction scale at pass i:

∆λi+1
∆λi

=
Var[εi]

Var[εi+1]
=

i+α

i+1
(8)

The intuition behind the parameter α is quite simple: for α
close to 1 the reconstruction scale will decrease slowly, hence
leading to only a slow variance growth. This implies that the
solution becomes smooth quickly, but at the cost of only a
slow decrease of bias. The opposite is true for small α.

Note that Eq. 8 is independent on the number of samples
traced per pass. This is obviously undesired, as different num-
ber of samples per pass will yield different results. Jarosz et al.
proposed the addition of a parameter M (denoting the number
of samples per pass) that compensates for this by applying the
reconstruction scale update M-times after each pass (note that
the original equation in [JNT∗11] contains a typo [Jar14]):

∆λi+1
∆λi

=
M

∏
j=1

(i−1)M+ j+α

(i−1)M+ j+1
(9)

This way the parameter α becomes independent of the pass
size and corresponds to changing ∆λ for every individual sam-
ple, albeit with a delayed application at the end of each pass.
This is especially beneficial in GPU implementations where
tracing small sample batches and frequent ∆λ updates would
heavily underutilize the available computational resources.

In addition, the recurrent relationship in Eq. 9 can be refor-
mulated to compute ∆λi explicitly:

∆λi = ∆λ1 ·
1

iM

iM−1

∏
k=1

k+α

k

However, we deem this less efficient than Eq. 9 as the number
of evaluated operations grows with each successive pass.

3.1. Application

Tracing ray differentials (both classic and spectral) is indepen-
dent on the specific Monte-Carlo method, and is described
in detail in [EBR∗14] and rephrased in Sec. 2. Different ren-
dering algorithms then apply this information depending on
their specific illumination reconstruction methods.

Light tracing traces illumination samples from the light
source. Upon landing on an opaque receiver surface at po-
sition p these are connected (“splatted”) to the sensor by a
projective mapping ρ ∈ R3→ R2. Spectral differentials are
applied by extending the basic point samples to 1D line seg-
ments from (p−∆p) to (p+∆p) (cf. Sec. 3) and splatting
each segment using ρ. The progressive variant simply traces
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Figure 4: Narrow beam of light dispersed by a curved object.

light samples in passes and decreases the reconstruction size
at each pass according to Eq. 9. This directly decreases the
magnitude of ∆p, converging to point samples.

Eye tracing operates similarly to light tracing except that
the sensor is sampled instead. In each pass, rays are started
at sensor positions pe and traced through the scene, yield-
ing receiver intersections and the corresponding spectral
differentials. These again define 1D sensor footprints from
(pe−ρ(∆p)) to (pe +ρ(∆p)) due to the reciprocity of light
transport. Although splatting is still applicable, it is less prac-
tical here since the samples already correspond to sensor (and
image) locations directly. Alternatively it is possible to store
the SRD statistics (∆p and optionally multilateral filtering
weights) in separate images and after the tracing stage apply
a 1D spatially-variant linear filter to the solution of each pass,
before it is averaged with the overall solution. Such filtering
is very fast thanks to its low dimensionality, but assumes
the SRD statistics are reasonably smooth (relatively to the
filtering scale). However, in contrast to the original SRD the
progressive variant does not suffer from the additional bias
due to averaging of the differential statistics, as each pass is
filtered separately and only then accumulated.

Photon mapping combines the two above approaches, con-
necting them via a kernel density estimate which is subject to
the previously described progressive methods (Sec. 1). Pro-
gressive SRD add an additional dimension to this estimate,
which results in an anisotropic density estimation kernel as
opposed to the standard isotropic (e. g., Gaussian) kernel.

4. Results and Analysis

To analyse progressive spectral ray differentials in detail we
have chosen light tracing with line splatting (Sec. 3.1) as
the representative algorithm. This is because the effects of
applying PSRD can be isolated and examined most clearly,
as no other sources of bias are present (compared to the
alternatives). On the other hand the results of this analysis
apply to the other approaches as well, since the basic concepts
behind the PSRD reconstruction are the same.

The core of our implementation is a GPU-based light tracer
written in OpenGL and GLSL. The splatting is performed
by rasterising line primitives procedurally generated from

Figure 5: Scene compositions used for Fig. 6 and Fig. 8.
Refractive objects are marked red, while blue corresponds to
an opaque diffuse receiver.

point samples in a geometry shader. All our results have been
generated on the NVidia GeForce GTX 770 graphics card.
We universally trace M = 200k samples per pass, which in
all examples amounts approximately to 50 ms. All presented
images are rendered at the resolution of 5122. For converting
spectral intensities to RGB colours the standard pipeline of
transforming to an intermediate CIE XYZ space by XYZ
colour matching functions [CIE32] has been used.

Visual analysis We first analyse PSRD for a simple setting
where a thin pencil of light is dispersed by a curved object.
This results in a simple, narrow, colourful caustic (Fig. 4)
which is bent by the dispersive object’s geometry (first row).
This introduces a nonlinearity that cannot be precisely han-
dled by the first-order approximation of the standard SRD,
resulting in a biased blurry reproduction (second row). In
comparison PSRD, despite initially containing this bias as
well, over time converge to the correct shape (third row).

For a more realistic analysis, we examine dispersive caus-
tics produced by two complex objects – the Blender monkey
(Fig. 6) and a brilliant-cut gem (Fig. 8). Both of these ob-
jects have IORs ranging between 1.6 (violet end) and 1.4 (red
end) in the visible spectrum and are illuminated by a con-
stant directional white light-field from the top. Fig. 5 shows a
schematic depiction of both scenes. We consider these objects
well representative – the monkey model is curved and has
both convex and concave areas, while the gem model has
many angled facets that cause multiple internal reflections
and hence a significant divergence of the incoming light.

Our aim has been to examine the rate of convergence (vi-
sually and numerically, see below) of SRD and PSRD in
comparison to the point-sampled reference, as well as the
bias of the resulting solutions. The SRD solution uses a con-
stant ∆λ value corresponding to 1/6 of the visible spectrum
range (cf. [EBR∗14]). The PSRD solution starts with the
same ∆λ value, which is then progressively updated using
Eq. 9 with α= 0.9. All the solutions are shown after selected
numbers of passes, as well as converged to a stable state.

The conclusions we can draw from this experiment are
in agreement with the theory discussed in Sec. 3. The point-
based reference solution is extremely noisy, especially in the
areas with low sample density, and therefore requires a high
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Figure 6: Convergence of the Blender monkey caustic. We compare the stochastic reference solution to the SRD and PSRD
solutions (which converge about an order of magnitude faster). Pieces of the respective converged solutions have been inserted
into the partial solutions to enable direct visual comparison of the residual variance. On the right we then show false-colour-coded
RMSE differences of the insets between SRD / PSRD solutions and the reference.

number of passes to converge. In agreement with the results
of [EBR∗14], SRD produce an exceptionally smooth solu-
tion, requiring about 1–1.5 orders of magnitude less passes
(and samples thereof). The results however contain visible
bias manifested as spatial blurring of features, similarly to
Fig. 4 (cf. difference images). In contrast the PSRD solution,
as expected, has a slightly slower convergence rate but the
results are visually indistinguishable from the reference.

Although the bias produced by SRD is often subtle it will
generally increase with the dispersion magnitude, but also
with distance the light travels after the interaction, as disper-
sion is an angular phenomenon. In Fig. 1 we demonstrate
this by artificially increasing the IOR range, which leads to
a much stronger dispersion. Here the bias is immediately
apparent, causing blurring or even different shaping of the
caustic features.

Numerical analysis Knaus and Zwicker [KZ11] and
Jarosz et al. [JNT∗11] have focused on numerically verifying
the probabilistic linearity relationships (Eq. 5 and Eq. 6) by
measuring the behaviour of several individual pixels of their
respective solutions. These results apply in our case as well,
and therefore we are mainly interested in the behaviour of
our PSRD solution as a whole, to complement the previous
analysis. For this we have measured the mean squared error
of the entire image for both SRD and PSRD solutions, both in
comparison to a converged reference solution. For our PSRD
solution we also analyse its behaviour for three different val-
ues of the parameter α. These measurements (corresponding
to the scenes in Fig. 6 and Fig. 8) are plotted in Fig. 7.

It is immediately apparent that the SRD solution converges
the fastest, but not to the expected error value of 0, resulting in
bias. Our PSRD solution empirically turns out to be optimal
for α values around 0.9, at least for the specific experiments

2k)passes 4k)passes 6k)passes 8k)passes 10k)passes

0.001

0.01

0.1

Blender)monkey

0

2k)passes 4k)passes 6k)passes 8k)passes 10k)passes

0.001

0.01

0.1

Brilliant)gem

0

SRD PSRD)(α)=)0.9) PSRD)(α)=)0.95)PSRD)(α)=)0.8)

Figure 7: RMSE plots showing the convergence over 10k
passes of the monkey (Fig. 6) and gem (Fig. 8) scenes. It is
obvious that SRD converge very fast but to a biased solution,
while PSRD, regardless of the actual value of parameter α,
approach the correct solution at the rate characteristic for
other Monte-Carlo approaches.

conducted here. For smaller α, such as 0.8 or less, the algo-
rithm regresses to very small ∆λ values too quickly, leading
to higher variance and slower convergence. And naturally,
the opposite holds for α values close to 1.
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Figure 8: Convergence of the brilliant gem caustic. We compare the stochastic reference solution to the SRD and PSRD solutions
(which converge about an order of magnitude faster). Pieces of the respective converged solutions have been inserted into the
partial solutions to enable direct visual comparison of the residual variance. On the right we then show false-colour-coded
RMSE differences of the insets between SRD / PSRD solutions and the reference.

5. Discussion and Conclusion

Our analysis in Sec. 4 demonstrates that the convergence of
SRD-based approaches is much better than the basic point-
based solution. This naturally comes from the fact that each
linear sample footprint generally covers many pixels in the
resulting image. Since the size of the footprint is defined in
the world space and not in the image space, an interesting
side effect is that the convergence of both SRD and PSRD
becomes even better if the resolution of the rendered image be
higher (because the number of pixels covered by a particular
sample footprint increases with resolution as well).

Same as all progressive photon mapping approaches our
algorithm is controlled by a scalar parameter α. Although
the intuition behind this parameter is easily grasped, the
actual value optimal in a given scene configuration is not
easy to determine without prior experimentation. Hence a
very interesting direction for future work is an automatic
determination of an optimal α value. This might be based
on a suitable statistical error metric, similar to the work of
Hachisuka et al. [HJJ10]. It is also conceivable that different
α values could be used in different parts of the scene instead
of a single global value.

In addition to the applications in standard Monte-Carlo
rendering pipelines (Sec. 3.1), other, more specific areas of
rendering might benefit from our work. Examples of these
include simulation of light transport in optical systems, most
prominently human eye [KMN∗04, RIF∗09] and artificial
lens systems [HESL11, HHH12]. The application of PSRD
is even more beneficial in rendering meta-materials or ex-
otic materials with high IOR ranges (Fig. 9) which produce
images with a certain artistic value. Here the dispersion is

much stronger; therefore, while the standard solution will
produce even more noise than usually, spectral differentials
will maintain their good convergence properties since their
footprints grow proportionally with dispersion magnitude.

Conclusion The introduction of spectral ray differentials by
Elek et al. [EBR∗14] has enabled a very rapid, near inter-
active way of working with dispersive refraction. The user-
controlled reconstruction size parameter ∆λ makes it possible
to first render dispersion coarsely (with larger bias) and fast,
and then by decreasing this value achieving a more accu-
rate, slower-converging solution. Our progressive extension
of SRD enables a fluent transition between these two modes,
so that users can still start with a fast and coarse solution
which then automatically converges to the correct, unbiased
one. In general these results extend the growing family of
ray differentials introduced by Igehy [Ige99], further demon-
strating the usefulness of this concept. We look forward to
see further applications of these approaches to other, more
advanced phenomena.
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Appendix A: Spectral Ray Differentials

For completeness we rephrase the expression for updating the
spectral ray differential (Sec. 2). The directional differential
∂d
∂λ

is updated as

∂d′

∂λ
=

∂η

∂λ
d+η

∂d
∂λ
− ∂µ

∂λ
n−µ

∂n
∂λ

with

∂µ
∂λ

=
∂η

∂λ
θ+η

∂θ

∂λ
+
−η

∂η

∂λ
+η

∂η

∂λ
θ

2 +η
2
θ

∂θ

∂λ√
1−η2 +η2θ2

and
∂θ

∂λ
=

∂d
∂λ
·n+d · ∂n

∂λ

Here, θ = d ·n. Note that p, d, n and η are all functions of λ
(directly or indirectly). The positional differential ∂p

∂λ
on the

other hand is not influenced by refraction.

For a more detailed description (in particular for how to
compute the derivatives of n and η) please refer to [EBR∗14].
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