EGSR 2014, June 25-27, Lyon/France

SPECTRAL RAY DIFFERENTIALS

Oskar Elek ^(1,2,3) Tobias Ritschel ^(1,2,3) Pablo Bauszat ⁽⁴⁾

Marcus Magnor⁽⁴⁾ Hans-Peter Seidel^(1,2,3)

Technische Universität Braunschweig

TEASER

TEASER

DISPERSIVE REFRACTION

<u>Snell's</u>	law:
$\frac{\sin\theta_1}{\sin\theta_2} =$	$=\frac{n_2}{n_1}$

DISPERSIVE REFRACTION

<u>Snell's</u>	a law:
$\frac{\sin\theta_1}{\sin\theta_2}$	$=\frac{n_2}{n_1}$
$\overline{\sin\theta_2}$	$=\frac{2}{n_1}$

DISPERSIVE REFRACTION

Credit: Andrew Davidhazy

Credit: Peter Kutz

DISPERSIVE REFRACTION

Regular sampling

DISPERSION RENDERING 101

Stochastic sampling

DISPERSION RENDERING 101

Stochastic sampling

DISPERSION RENDERING 101

Stochastic sampling

- Additional concerns
 - Requires spectral rendering
 - Tracing monochromatic rays

- Additional concerns
 - Requires spectral rendering
 - Tracing monochromatic rays
- Reconstruction

- Additional concerns
 - Requires spectral rendering
 - Tracing monochromatic rays
- Reconstruction

- Additional concerns
 - Requires spectral rendering
 - Tracing monochromatic rays

Reconstruction

- Introduced by Igehy in 1999
- Later extended to:
 - Paths (Suykens, Willems; 2001)
 - Photons (Schjoth, Frisvad, Erleben, Sporring; 2007)
 - Diffuse reflection (Fabianowski, Dingliana; 2009)

- Introduced by Igehy in 1999
- Later extended to:
 - Paths (Suykens, Willems; 2001)
 - Photons (Schjoth, Frisvad, Erleben, Sporring; 2007)
 - Diffuse reflection (Fabianowski, Dingliana; 2009)

$$\frac{\partial \mathbf{R}}{\partial s} = \left(\frac{\partial \mathbf{p}}{\partial s}, \frac{\partial \mathbf{d}}{\partial s}\right)$$

- Introduced by Igehy in 1999
- Later extended to:
 - Paths (Suykens, Willems; 2001)
 - Photons (Schjoth, Frisvad, Erleben, Sporring; 2007)
 - Diffuse reflection (Fabianowski, Dingliana; 2009)

- Introduced by Igehy in 1999
- Later extended to:
 - Paths (Suykens, Willems; 2001)
 - Photons (Schjoth, Frisvad, Erleben, Sporring; 2007)
 - Diffuse reflection (Fabianowski, Dingliana; 2009)

∂ R _	d 6)	∂d ∕
$\frac{\partial \lambda}{\partial \lambda}$ –	$\left(\frac{\partial \lambda}{\partial \lambda} \right)$	$\overline{\partial \lambda}$

SPECTRAL RAY DIFFERENTIALS

Download "Caustic – Spectral Decomposition" from tinyurl.com/SpectralRayDifferentials if video is missing

- Tracing
 - Identical to ray differentials

- Tracing
 - Identical to ray differentials
- Reconstruction
 - 1st order approximation

- Tracing
 - Identical to ray differentials
- Reconstruction
 - 1st order approximation

- Tracing
 - Identical to ray differentials
- Reconstruction
 - 1st order approximation

- Tracing
 - Identical to ray differentials
- Reconstruction
 - 1st order approximation

- Tracing
 - Identical to ray differentials
- Reconstruction
 - 1st order approximation

RESULTS Light Tracing (Arvo; 1986)

Stochastic - 2 minutes

Ours - 2 minutes

Stochastic - 60 minutes

RESULTS Light Tracing (Arvo; 1986)

Stochastic - 2 minutes

Ours - 2 minutes

Stochastic - 60 minutes

RESULTS Light Tracing (Arvo; 1986)

Stochastic - 2 minutes

Ours - 2 minutes

Stochastic - 60 minutes

RESULTS Light Tracing (Arvo; 1986)

Download "Caustic – Naive Sampling" from inyurl.com/SpectralRayDifferentials if video is missing

Download "Caustic – Spectral Differentials" from tinyurl.com/SpectralRayDifferentials if video is missing

Stochastic - 1 minute / frame

Ours - 1 minute / frame

RESULTS

Stochastic - 1 minute / frame

Ours - 1 minute / frame

Stochastic – 1 second

Ours - 1 second

Stochastic - 20 seconds

Stochastic – 1 second

Ours - 1 second

Stochastic - 20 seconds

Stochastic – 1 second

Ours - 1 second

Stochastic - 20 seconds

Real-time photon mapping (Wyman, Davis; 2006)

RESULTS Interactive on-screen caustic editing

Interactive & local dispersion control

CONCLUSION

- Spectral Ray Differentials
- Extend the happy family of ray differentials
- Reconstruction / variance reduction method

CONCLUSION

- Spectral Ray Differentials
- Extend the happy family of ray differentials
- Reconstruction / variance reduction method

- In future
 - Making SRD progressive

CONCLUSION

- Spectral Ray Differentials
- Extend the happy family of ray differentials
- Reconstruction / variance reduction method

- In future
 - Making SRD progressive
 - Application to other phenomena

Oskar Elek ^(1,2,3) Tobias Ritschel ^(1,2,3) Pablo Bauszat ⁽⁴⁾

Marcus Magnor⁽⁴⁾ Hans-Peter Seidel^(1,3)

Technische Universität Braunschweig

Thanks

- Antti Oulasvirta, Oliver Klehm, Alexander Wilkie, Karol Myszkowski
- Anonymous reviewers
- You!

More info

tinyurl.com/SpectralRayDifferentials

