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Figure 1: We reproduce the blurring and colour shifts in participating media such as sea water from a single HDR image and its depth buffer
(right) in real-time (4.3 ms for the scattering, 40.2 ms framebuffer generation (HDR, PCF soft shadows, SSAO), 2048×1024 resolution).

Abstract

This work presents an approximate algorithm for computing light
scattering within homogeneous participating environments in screen
space. Instead of simulating the full global illumination in partici-
pating media we model the scattering process by a physically-based
point spread function. To do this efficiently we apply the point
spread function by performing a discrete hierarchical convolution
in a texture MIP map. We solve the main problem of this approach,
illumination leaking, by designing a custom anisotropic incremental
filter. Our solution is fully parallel, runs in hundreds of frames-per-
second for usual screen resolutions and is directly applicable in most
existing 2D or 3D rendering architectures.
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ods, real-time rendering

1 Introduction

The visual richness we observe around us is a consequence of various
different optical phenomena. Among these, light scattering is of
large importance, as participating media causing this phenomenon
are very common in our environment. Virtually all non-metallic
substances scatter light to a certain extent, including such basic
compounds as air, water, milk or organic tissues.

Light scattering influences appearance of objects on both local and
global scale. Since light can interact with the medium at any point
within, simulation of these effects has been challenging for computer
graphics algorithms, which were originally based on the simplifying
assumption of light interacting only with discrete boundaries of
objects which are separated by vacuum.

The local interaction of light with media can to some extent be sim-
ulated by sub-surface scattering models. An example of these is the
successful method of Jensen et al. [2001] built on the dipole diffu-
sion approximation, which serves as a basis for many approaches
even today. In certain cases of very dense objects it is even possible
to use a bi-directional reflectance distribution function (BRDF) to
approximate the light scattered from underneath the surface of a
simulated object. An example is the Lambertian reflectance model.

On the other hand, simulating global illumination in the presence of a
participating medium is arguably more challenging. Imagine a room
filled with smoke; the smoke will influence light propagation in the
entire room and therefore the algorithm that attempts to include this
effect will not be able to localize it to surfaces as in the previous case.
Although most standard global illumination solvers can be extended
to include participating media, this is often computationally very
demanding and can render a particular method too slow for practical
utilization. Moreover, this issue will naturally stand out even more
if one is interested in simulating global illumination interactively.

In this work we attempt to design an approximate interactive method
to simulate global effects caused by light scattering in screen space.
Screen-space methods are popular in interactive environments for
their usual simplicity and speed. Despite the intrinsic drawback that
they neglect parts of the scene that are not visible to the camera they
are still very convenient in certain conditions.

Our main intention is to simulate scenes containing a homogeneous
participating medium. Prime examples of such scenes are foggy
outdoor or underwater environments. As light scattering manifests
itself mainly by blurring of the illumination, the central idea of our
approach is to use a physically-plausible two-dimensional filter (a
point spread function [Premože et al. 2004]) to blur the illumination
of the rendered scene depending on each pixel’s distance. This
approach is well known in depth-of-field simulation research, where
it has first been presented by Rokita et al. [1993] and frequently used
since. To avoid convolution by large spatially varying filter kernels,
we adapt and improve a variant of hierarchical anisotropic filtering
[Lee et al. 2009]. The main improvement (described in Sec. 3) lies
in our modification of the anisotropic Gaussian filter that prevents
the illumination leaking more effectively.

In the following section we provide some background theoretical in-
formation about light scattering and an intuition behind the empirical
behaviour of this process.

2 Background

Light scattering is a complex physical phenomenon and under gen-
eral conditions it is indeed difficult to simulate. On the other hand,



understanding the empirical high-level behaviour of this process
is much easier. We will therefore first explain the intuition behind
this behaviour and then provide a short formal description of the
corresponding physics in the second part of this section.

If a beam of collimated light enters a medium some of its photons
will scatter and their propagation direction will change from the
original beam direction. This will result in blurring of the beam.
One can naturally expect that the deeper into the medium the beam
progresses, the more photons will scatter out of it. This will provide
them more space to spread, causing the beam to get more blurry.
The blurring will as well increase with higher optical thickness of
the medium, simply because the scattering interactions will take
place more frequently.

In screen-space methods, instead of considering individual light
sources in 3D space explicitly, every pixel of the rendered image
implicitly is a light source. Based on the description from the
previous paragraph we can expect the blurring of every pixel to
be proportional to its distance from the camera and on the optical
thickness of the medium itself. Accounting for the scattering of the
visible portion of the scene then roughly entails:

1. obtaining the correct distance-dependent blurring kernel and
2. convolving the rendered scene image with this kernel.

At this point we would like to formalize this informal description
by first reviewing the radiance transfer equation (RTE) and then
transitioning to a different approach based on a point spread function
(PSF) formulation, which is more suitable for our purpose.

Radiance transfer equation The RTE describes propagation of
light through a participating medium:

dL(x,ω)

dx
=−σt(x)L(x,ω)+σs(x)

∫
Ω4π

L(x,ω ′)p(ω ′,ω) dω
′

(1)

Eq. 1 describes a differential change of radiance L at the point in
space x in the direction ω . The extinction coefficient σt is obtained
as σt = σa +σs, where σa is the absorption coefficient and σs the
scattering coefficient of the simulated medium. These quantities are
wavelength-dependent, which will be implicit throughout the rest
of the paper. The spherical function p is called the medium phase
function (in homogeneous media p is spatially invariant). It defines
an angular distribution of light after it scatters on a medium particle.
See Fig. 2 for a depiction of the concept behind RTE.
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Figure 2: An illustration of the concept of the RTE: the radiance L
at x in the direction ω (a) is attenuated by extinction in the medium
(b) and subsequently increased by integrating radiance contributions
from the entire sphere that scatter into ω (c). The cases (b) and (c)
correspond to the two terms on the right side of Eq. 1.

The RTE is a versatile mathematical tool easily extensible to
more general types of scattering. One of the main features of
this formulation is the locality of its evaluation, which makes it
particularly useful in local finite element methods. However, in our
approach we are looking for a global description of the scattering

process, as we are interested in expressing the spreading of light
when it propagates from one point in space to another. For this we
will make use of the concept of point spread function.

Figure 3: Two examples of point spread functions: circular Gaus-
sian with standard deviation of 3 (left) and a circular aberration of
an optical system in different levels of de-focusation (top right) with
the corresponding longitudinal section (bottom right).

Point spread function A PSF is a function f (x) ∈R2→R+ that
defines the spreading of a point signal, which is usually represented
by the Dirac pulse. Fig. 3 shows an example of a point spread
function. PSFs usually cause blurring of the original signal and
appear for various causes, e. g., flaws or limitations of measurement
systems, or, as in our case, as a direct result of a physical process.

As these blurring effects appear frequently PSFs have been widely
adopted in both image processing and computer graphics. For
instance, in the context of light scattering, Narasimhan and Na-
yar [2003] derived a physically-plausible PSF for analysing atmo-
spheric weather conditions, Premože et al. [2003; 2004] applied
PSFs to derive a global illumination solver for participating media,
and Lopez-Moreno et al. [2008] used this framework for artistically-
driven image modification to convey presence of participating media.

A PSF is applied by convolution of the original signal with a par-
ticular expression of the PSF, which can be discrete and tabulated
or might have a closed analytical form. Based on the explanation
we have provided earlier the usefulness of formulating light scat-
tering by a PSF becomes apparent now. Having an expression for
the amount of blurring caused by scattering between two points in
space, obtaining a version of the rendered image with the scattering
accounted for is basically a matter of performing a discrete convolu-
tion of the image and the PSF. Naturally, it is also necessary to know
the distance to each pixel in the image to locally control the degree
of blurring.

Please note that in our case the PSF varies spatially, and hence
does not conform to the original definition. We therefore call the
functional that maps every spatial location to the PSF that accords
to the camera distance of that location F(x,y) ∈ (R2×R2)→ R+.
Applying this spatially-varying, distance-dependent PSF to an image
is not a simple convolution with the PSF itself, but a convolution
with a kernel that is only similar to the PSF. Additionally this kernel
will likely be anisotropic, although the original PSF might have been
isotropic.

An expression for a spatially-varying scattering PSF has been de-
rived by Premože et al. [2004] based on the path integral formulation
originally devised for application in quantum physics. The authors
assume a Gaussian spatial distribution of the photons scattered from
an incident collimated pencil of light. This is a reasonable assump-
tion according to the central limit theorem, since scattering can be
regarded as a stochastic process with many realizations. Premože
et al. estimate the standard deviation W of the resulting Gaussian



Sidebar 1: Path integral formulation

The radiance transfer equation (Eq. 1) defines the local be-
haviour of light in the presence of a participating medium. It is
however not immediately clear how this behaviour relates to light
propagation on a larger scale.

One way to bridge these two paradigms is to use the path inte-
gral formulation [Tessendorf 1987; Premoze et al. 2003; Premože
et al. 2004; Tessendorf 2011]. According to it the RTE can be
reformulated using the so-called Green propagator (evolution
operator) G as

L(x,ω) =
∫

G(x,x′,ω,ω ′)L0(x′,ω ′) dx′dω
′,

L0 being the initial radiance distribution in space. G therefore
describes how the initial energy distribution changes when the
boundary conditions are taken into account.

It is however not immediately obvious how this mathematical
formulation relates to the underlying physical process. What G
describes is an averaged high-level behaviour of many individual
photons, which are randomly scattered in the medium. As previ-
ously noted [Premoze et al. 2003; Premože et al. 2004] a similar
process has been described in the field of quantum mechanics
by the means of the sum over particle histories [Feynman and
Hibbs 1965]. This method states that the probability of a particle
being in a certain position in space is obtained by superposing

all possible paths the particle might have taken within the given
boundary conditions.

As Premože and Tessendorf observed, in light transport we can
similarly obtain the light intensity in a certain point and direc-
tion by integrating all possible photon paths that conform to this
boundary condition. This can informally be written as

L∼
∫

all paths
e−τ(path),

where τ defines an effective attenuation of a path (essentially
stating its contribution to the result in accordance with the
Beer-Lambert-Bouguer law). Obviously the difficult part of
this relatively simple idea is to rigorously express the infinitely-
dimensional integral over the path space, and this has been the
focus of the above-cited works.

Path Integral References
FEYNMAN, R. P., AND HIBBS, A. R. 1965. Quantum mechanics

and path integrals. McGraw-Hill.
TESSENDORF, J. 1987. Radiative transfer as a sum over paths.

Phys. Rev. A 35, 872–878.
TESSENDORF, J. 2011. Angular smoothing and spatial diffu-

sion from the Feynman path integral representation of radiative
transfer. J. Quantitative Spectroscopy & Radiative Transfer
112, 751–760.
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Figure 4: Behaviour of the function W (s) (Eq. 2) for σa = 0.1,
σs = 0.3 and g = 0.9: plot of the function in dependence on the
travel distance s (in meters) (a) and the resulting Gaussian PSF
shape for three different travel distances (b). The corresponding
standard deviations of the curves in (b) are marked in (a).

PSF based on the travel distance s as

W (s) =

√
1
2

(
2σa

3s
+

4
s3σs(1−g)

)−1
(2)

The scattering asymmetry factor g is defined as an average cosine on
the scattering angle θ resulting from the used phase function p as
g=

∫
Ω4π

p(θ)cosθ dω ′; it is often used as a shape control parameter
for analytical phase function expressions, such as the frequently used
Henyey-Greenstein function. The behaviour of Eq. 2 is shown in
Fig. 4.

We employ this expression in our method as well. For further details
about the relation between radiance transport theory and path integral
formulation please refer to Sidebar 1. In the next section we present
an overview of our approach and then discuss its details in the
following sub-sections.

3 Our approach

Having expressed the ideas behind our approach we can now proceed
to its algorithmic description. We first provide an overall view of
the whole process and then proceed to explain the individual steps
in more detail.

3.1 Overview

Input to the algorithm is an HDR image I : N2 → R3 containing
incoming radiance and a distance map D : N2 → R of the same
resolution. D contains the world-space distance of every pixel to
the camera; the common linear z-buffer is approximately such a
distance map. The output is an image J which includes scattering
and absorption caused by a specified homogeneous medium.

The challenge of rendering participating media efficiently in screen
space is to avoid performing convolutions by large and spatially
varying PSF kernels. Instead, our approach approximates scattering
computation by a gathering computation and performs only constant
time local image modifications, combined with a specially con-
structed MIP map. The algorithm proceeds in three steps (cf. Fig. 5),
each of which operates fully parallel over image pixels:

1. First, the attenuation of the medium is accounted for. This
step produces three images: I′ : N2 → R3 which contains the
radiance that did not interact with the medium at all, I[0] : N2→
R3 containing the radiance that was scattered in the medium,
but not absorbed, and W[0] : N2 → R which stores additional
distance-dependent information necessary to build the MIP map
in the next step. Sec. 3.2 describes this step in detail.

2. The second step produces a K-level MIP map I[1..K] out of I[0].
This MIP map is used to approximate the spatially-varying filter
required in Step 3. Every level of I[1..K] contains an increasingly
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Figure 5: The three stages of the proposed algorithm shown for a box filled with water and shiny objects (from left to right): The input is
first split into attenuated and scattered radiance as well as spread-space distance. Second, the scattering and spread-space MIP maps are
constructed (the first three levels are shown). Finally, the result is produced by combining the attenuated and the scattered radiance blurred
according to the spread-space distance.

blurred version of I[0]. Different from classic MIP maps, we
account for the non-linearity caused by applying the scattering
PSF by a Gaussian gather function. To this end, a second MIP
map W[0..K] storing the so-called spread-space distance is con-
structed and used. This is the core step of the algorithm and is
detailed in Sec. 3.3.

3. Finally, the distance s of every pixel in I stored in D is used to
select a MIP level to fetch an approximation of the convolution
of I with a Gaussian similar to W (s). This fetched value is then
simply added to I′, producing J. Sec. 3.4 describes this step.

To simplify the notation we will be applying basic arithmetic opera-
tions and functions to whole images. The result of such an operation
is again an image, where the respective operation is applied per-
pixel. Further, we will be using discretized versions of continuous
functions, for instance W is a discretized version of W .

3.2 Preprocessing

This step produces the images I′, I[0] and W[0]:

I′ = e−σtD · I (3)

I[0] = e−σaD · (1− e−σsD) · I (4)

W[0] =W (D) (5)

Eq. 3 calculates the attenuated radiance according to the Beer-
Lambert-Bouguer law, that is, the fraction of light that reaches
the camera directly without interacting with the medium. This is the
original colour of the scene, but attenuated according to the distance
by σt, as seen in Fig. 5. I′ will be utilized only in the final Step 3
(Sec. 3.4).

Eq. 4 obtains the part of the radiant energy that was not absorbed
(first factor) but was scattered (second factor) on its way to the
camera. This is the energy that will be blurred in Step 2, therefore
will show colour shifts caused by the medium absorption, e. g., in
water will turn increasingly blue for more distant pixels. Again
this effect can be seen in Fig. 5. The consequences of decoupling
absorption and scattering in this way are discussed in Sec. 5.1.

Finally, Eq. 5 projects the pixels’ distances into what we call the
spread space. The motivation for this is to design our anisotropic
filter so that it more closely matches the scattering behaviour. This
will be detailed in the following section.

3.3 Filtering

This subsection introduces the screen-space reference solution, as
well as a naı̈ve and our approximation to it.

Screen-space reference To compute scattering in screen space
for every pixel location x in I[0], one could (quadratically) iterate
over all other pixels y and evaluate how much the (spatially varying)
PSF of y contributes to x according to F [y](y− x). Even if the
range of pixels to visit for every pixel can be limited to a smaller
neighbourhood—which is generally not possible for HDR conditions
or optically thick media—the effort is substantial and can take up to
several seconds for a single image. We call this method the screen-
space reference and compare it to our approach in Figs. 7 and 8.

Naı̈ve approximation If the PSF was spatially invariant, we could
compute the convolution of the image with the PSF by building a
simple Gaussian MIP map. Gaussian MIP maps can be constructed
efficiently, and the convolution of the image and the PSF could be
evaluated precisely by a single fetch from the corresponding MIP
level, at each pixel.

Using this approach to apply a spatially variant PSF naturally bears
some limitations. First, fetching a value for a pixel corresponding
to its distance assumes that each pixel from its neighbourhood con-
tributes to it with a PSF of the same size. In addition, the convolution
kernel is not even a Gaussian anymore, but the sake of our approxi-
mation we assume it can be reasonably approximated by one. We
call this the naı̈ve method and compare it to our approach in Fig. 6.

This approximation works reasonably well if the PSF does not
change abruptly across the image. Unfortunately this is not the
case for distance discontinuities on object boundaries. The most vis-
ible consequence of such variation is illumination leaking (Fig. 6a),
which happens because bright image locations close to the camera
are blurred into the higher MIP levels that correspond to more distant
parts of the scene. When the radiance of a distant pixel is then read
from the corresponding MIP level, it is influenced by this leaked
radiance, although it should not be as the source highlight is closer to
the camera. Regrettably, this issue is especially apparent for scenes
where the effect we try to render is most desired: scenes with high
dynamic range, such as the one shown.

Our approximation We remedy this problem in a similar manner
as done for depth-of-field rendering by Lee et al. [2009]. To prevent
leaking of illumination from “closer” MIP levels to higher, more
“distant” levels during the MIP map construction we need to know
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Figure 6: Comparison of our method in various stages and with other methods. Applying the standard Gaussian MIP map (a) leads to
light leaking, which is slightly reduced by applying step (b) and the smoothstep (c) thresholding, but then significantly by weighting the
spread-space distance by the pixels’ luminance during the averaging (d). The discontinuities that still remain are successfully removed by
blurring the distance map (e). The screen-space reference (f) resulting from a spatially variant Gaussian PSF computed by gathering from a
100×100-neighbourhood is three orders of magnitude slower (2.1 s vs. 2.7 ms for our solution). (g) shows the scattering MIP map used to
produce (e).

the distance of the filtered pixels and incorporate it into the filtering
process. The resulting anisotropic filter then masks out such leaking
pixels as the higher MIP levels are constructed. For this we construct
W[0..K] containing the distance projected to spread-space, which can
be used in the same manner as the distance itself thanks to the direct
dependence between them (cf. Fig. 4a). The spread-space distance
performs better for our purpose, because it allows us to directly relate
the MIP levels with the distance-dependent masking thresholds, as
described in a moment.

We first describe the construction of the MIP pyramid I[1..K]. To
obtain I[k] (where k = 1..K) we need to mask out those pixels of
I[k−1] during the filtering that correspond to smaller distances in the
scene, in order to avoid the light leaking:

I[k] = (M[k] · I[k−1])∗G′, (6)

where G′ is a simple discrete Gaussian-like filter, in our case a 4×4
filter with weights {0.13,0.37,0.37,0.13} for each dimension. As
shown by Burt [1981], for the given size this is the filter that leads
to the smallest deviation from the exact Gaussian distribution. The
auxiliary mask M at level k can be defined as

M[k] = smoothstep(T,(1+ ε) ·T,W[k−1]). (7)

The definition uses the standard smoothstep function to perform the
masking smoothly. The parameters T and ε control the masking
threshold distance and width. As shown by Burt [1981], when a
discrete hierarchical convolution as in our case is performed, the
width of the corresponding result filter doubles with every level of
the hierarchy, and therefore the threshold that separates these levels
must double in size as well. Because of this we define T = c ·2k−1,
where c is a scaling constant described in Sec. 3.4.

Simultaneously with I[1..K] we build the MIP chain W[1..K]. The
MIP map W[0..K] holds average spread-space distances for whole
groups of pixels at the corresponding levels, as they are needed for
computation of I[1..K] (Eq. 7):

W[k] =
(Y[k] ·W[k−1])∗U

Y[k] ∗U
, (8)

where U is the uniform distribution of the same size as G′. We
further define the auxiliary mask Y at level k as

Y[k] = y(I[k−1]). (9)

The average is obtained by weighting the distance of each pixel by
its absolute RGB luminance y, as brighter pixels ought to contribute
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Figure 7: Evaluation of our method for different values of medium optical thickness (τ ≈ 2,4,6 and 8 from left to right). Numerical evaluation
against the screen-space reference is included to gauge the performance of our filtering solution under different optical conditions.

more to the average distance that will be used as a masking criterion
for obtaining the next MIP level (since their energy leakage we need
to avoid primarily). In other words, the brighter an area is the more
precise will our approximation at that position be.

We mathematically describe the averaging process in Eq. 8 as weight-
ing W by Y and then performing the averaging as a convolution with
the box filter U. The uniform distribution is used instead of a Gaus-
sian in this case, because for the average spread-space distance there
is no reason to favour the central samples – we only need to take
into account the pixels which can potentially cause the leaking.

The effectiveness of our formulation in reducing the light leaking is
shown in Fig. 6b–d and the overall comparison to the screen-space
reference is provided in Fig. 7.

3.4 Final compositing

Having the filtered MIP map that represents the scattering computed,
obtaining J essentially amounts to reading each pixel’s correspond-
ing distance-dependent MIP level from I[0..K] and adding it to I′.

The mapping from a pixel’s distance to its MIP level needs to take
into account that both the corresponding filter size and the mask-
ing threshold T grow exponentially with the increasing MIP level

(Sec. 3.3). Therefore, the corresponding MIP level will grow loga-
rithmically with spread-space distance as

`(D) = clamp
(

log2
W (D)

c
,0,K

)
(10)

The scaling constant c determines the actual width of the correspond-
ing filter in the MIP chain. Burt [1981] uses c = 0.56 for a 5×5
incremental filter, we however found that the value of 0.8 matches
the screen-space reference solution much better in the case of our
4×4 filter. And, since the MIP levels must closely correspond to
the masking threshold applied to them, c is also included in the
definition of T in Sec. 3.3.

The issue with the direct application of Eq. 10 to obtain the appro-
priate MIP level is the emergence of discontinuities in the resulting
image, as shown in Fig. 6a–d. This problem is inherent to pyramidal
convolution methods. The common workaround to this problem first
introduced in [Bertalmio et al. 2004] is to create a uniformly blurred
version of the distance map and use this to determine the appropriate
MIP level instead. This creates smooth transitions around depth
discontinuities and therefore also gradual increase of the blurring
level in these places.

The simplest way to perform this is applying an isotropic Gaussian
pyramidal blur to D. This is very fast as the isotropic Gaussian filter
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Figure 8: Comparison to screen-space and path-tracing solutions for two different scattering intensities. We measured the average RMS error
for RGB intensities and also per-pixel differences in HSB space. The peak error the HSB difference images represent is 20 %.

is separable and D is a single-channel image. However the main
flaw of simply using an uniformly blurred distance map is that the
areas closer to the camera are blurred just as much as distant areas.
Our proposal is based on the intuitive observation that the size of the
blurring transition at distance discontinuities should be proportional
to the blurring due to the scattering itself. This translates to using the
distance of a pixel to determine the strength of blurring the distance
map, and use this blurred distance value to calculate the query to the
scattering MIP map and obtain the final image, J:

L= `(D[`(D[0])]) (11)

J= I′+ I[L]. (12)

Our solution is similar to [Lee et al. 2009], but simpler. This is
possible because the blurring caused by light scattering increases
monotonically with the distance from camera, while in depth-of-field
simulation it increases in both directions with increasing distance
from the focal plane. Therefore, instead of building the specialized
anisotropic MIP map described by Lee et al. we build a simple
isotropic MIP pyramid, which can further be utilized by other screen-
space methods, may the need be.

3.5 Implementation

In this section we provide additional performance considerations
about the algorithm described above. First, it should be noted that it
is not always necessary to build the full MIP chain of I (i. e., down
to the 1-pixel level). If the maximal distance in the scene is known,
then the value of the function W can be bounded with this distance
and the used medium parameters. With the bound of W we can then
determine the highest necessary MIP level K in the same way as `

is obtained in Eq. 10. In our implementation K = 6 proved to be
sufficient in all cases.

Additionally, as an optimization we pack the spread space distances
W into the alpha channel of the radiance texture when constructing
the MIP map of I. Only one MIP map is therefore constructed, just
its RGB channels are computed differently than its alpha channel.

Finally, to read I[0..K] in Eq. 12 we use a linear-bi-cubic fetching
operation, since we need to obtain an as smooth result as possible.
This means that to obtain a value at level ` (which is generally not
an integer as defined by Eq. 10) we read the two adjacent levels b`c
and b`c+1, each with a bi-cubic fetch, and then linearly combine
the results. This would require reading 32 samples in total, leading
to an excessive cost of this step. We therefore modify the bi-cubic
fetch in the way that groups of 4 pixels are fetched at the same time
by a single bi-linear fetch from a position obtained by relating the
respective pixels’ weights given by the bi-cubic filtering function
[Sigg and Hadwiger 2005]. We therefore decrease the number of
fetches to 8 (linear ones), which on GPU are virtually as fast as point
fetches. We also experimented with the circular filtering described in
[Lee et al. 2009], but found it to perform much worse in our context,
in spite of the same number of fetches it requires.

4 Results

We implemented the described algorithm in an interactive rendering
framework written in C++ and GLSL, using OpenGL. The GPU
used in all tests and examples was NVidia GeForce GTX 485 Mobile
with 2 GB video memory.

Figs. 1, 7 and 8 show typical results of our approach. Fig. 9 shows



Figure 9: Application of our technique to a photograph with an automatically segmented distance map (inset) using three different media.

the application of our approach to an RGBZ photograph. Such im-
ages are likely to become increasingly popular in the future, with
depth sensors such as Microsoft Kinect becoming commonly avail-
able to the mass market.

A quantitative evaluation of our approach is shown in Fig. 8. In
addition to the screen-space reference we also compare to a path-
tracing solution. Please note that we applied path tracing just to
the scattered portion of the illumination, instead of the full global
illumination. The reason for this is to eliminate differences caused
by the traditional approximations to global illumination on surfaces
that we utilize, such as soft shadow maps or ambient occlusion. It
can be seen that despite numerous approximations our algorithm
builds on (cf. Sec. 5), we are still able to obtain reasonable results
even for very dense media.

The performance of our technique is detailed in Table 1; as can be
seen it is always in hundreds of FPS, making it a good candidate
for a post-processing step integrated in a real-time graphics engine.
Probably the most important observation is that the computation
time scales linearly with the number of rendered pixels, as opposed
to the quadratic growth in the screen-space reference solution. In
addition, the measurements show that using our anisotropic filter
incurs only a very small additional cost in comparison to the naı̈ve
solution, despite increasing the quality considerably. Finally, we
measured performance for different filtering kernel sizes; please
refer to Sec. 5 for a discussion in this regard.

I/D Res. Step 1 Step 2 Step 3 Total

Ours Naı̈ve

2×2 4×4 6×6 4×4
1 MPx 0.3 ms 0.7 ms 1.1 ms 2.6 ms 1.0 ms 1.2 ms 2.6 ms
2 MPx 0.6 ms 1.2 ms 1.6 ms 4.6 ms 1.5 ms 2.1 ms 4.3 ms
4 MPx 1.2 ms 1.9 ms 2.6 ms 8.6 ms 2.3 ms 4.2 ms 8.0 ms

Table 1: Performance our our technique for different image resolu-
tions. Each step is measured individually, Step 2 for different filter
types. The total time is the sum of Steps 1–3 with our 4×4 kernel
used in Step 2.

5 Discussion

The approach described in this paper is an addition to the increasing
number of screen-space methods, the history, strengths and weak-
nesses of which are briefly summarized in Sidebar 2.

Relation to depth-of-field rendering As already mentioned our
method closely relates to [Lee et al. 2009], and some of the involved
steps might be regarded as adaptations from this method. Further,
similar to depth-of-field methods, an explicit bilateral filtering could
be used to limit the illumination leakage even more (although our
anisotropic filter in fact acts as a simple bilateral filter). Finally, an

interesting possibility to explore is to use the scattering MIP map to
render depth-of-field effects as well. This should be well feasible,
and the main step towards such approach would be to combine the
degrees of blurring due to scattering and de-focus and use the result
to query the filtering hierarchy.

Filtering kernel size As the resolution of the MIP map levels
halves with each additional level, the size of the filtering kernel must
be even. Taking into account the results of [Burt 1981], we found
that the filter size which provides the best compromise between price
and quality is 4×4. While it is possible to use a 2×2 filter (with
an approximately 30% performance gain in the filtering step, cf.
Table 1), its application does not correspond to a Gaussian filtering
anymore, as it is equivalent to a box filter. Its limited spatial support
also causes disturbing temporal flickering artefacts, especially in
scenes with a very high dynamic range. On the other hand, using
a 6×6 kernel increases the cost of the filtering step considerably,
roughly in proportion to the increase of fetches required to compute
it. Though slightly reducing the temporal flickering, we found that
it does not compensate for the increased computational costs.

5.1 Limitations

Approximation by PSF Approximating scattering or any other
global effect in this way is inherently limited. First, the derivation
of the underlying PSF itself (Eq. 2) relies on certain simplifying as-
sumptions [Premože et al. 2004]. Although the derivation considers
multiple scattering, the PSF expression is limited to homogeneous
media. It is still possible to include heterogeneous media in an
approximate way, by using ray-marching to integrate the medium
parameters for each pixel individually; this would however increase
the cost of our approach significantly.

Using the image of the scene as a starting point for approximating
the scattering is also not entirely correct. The reason is that the
calculation of the illumination even before considering the camera
should already take the presence of a participating medium into
account, which typically is not the case. Thus, incorporating at
least some of the effects of scattering into the standard interactive
rendering pipelines and algorithms is indeed an interesting direction
for future exploration.

Another limitation is that light sources which are not directly visible
are not accounted for. It would be possible to use more advanced
techniques to remedy this, such as depth peeling to resolve oc-
cluded light sources and analytical airlight models to account for
off-screen sources of light, but again, with considerable increases
of the rendering time. The simple measure we use in the majority
of our examples is the addition of an emissive term derived from
the intensity of the environmental illumination in the scene. Also,
as the employed model simulates multiple scattering as a blurring
operation, high-frequency effects due to both on- and off-screen
sources are not captured by our technique. These include phenom-
ena such as light shafts and volumetric caustics, which in scenes



Sidebar 2: Screen Space

Approximating costly computation of 3D illumination effects
by simple 2D image operations becomes increasingly popular in
practical interactive applications such as computer games. The
key idea behind such screen-space methods is that modern GPUs
produce more than just RGB colour when making use of the
deferred shading technique [Deering et al. 1988]. Often per-pixel
depth, normal or reflectance information complements the colour
framebuffer (Fig. 1). Consequently, screen-space techniques
utilize this additional information and, parallel over all pixels,
compute advanced shading effects from it.

Ambient occlusion [Mittring 2007] was one of the first effects
to be simulated in screen-space, followed by later extensions to
directional occlusion and indirect light [Ritschel et al. 2009] or
sub-surface scattering [Jimenez et al. 2009]. Besides light trans-
port, approximations to depth-of-field [Rokita 1993; Lee et al.
2009], glare [Kawase 2005] or motion blur [Ritchie et al. 2010]
are of practical importance.

All screen-space methods face the difficulty of balancing be-
tween fast and simple but approximate local linear filtering and
complex non-linear filtering that has to account for a high number
of neighbouring pixels. Furthermore, PSFs define how much a
pixel contributes to other pixels (called a ,,scatter-type” compu-
tation). This is not identical to a function that encodes for every
pixel how much to ,,gather” from its neighbours. Nonetheless,
scattering-type computation is routinely replaced by gathering
ones as they fit the execution on modern GPUs much better.

However, large linear filters still remain costly. Every pixel
has to iterate over a large neighbourhood, and, in the extreme
case of large PSFs each pixel enumerates all pixels of the entire
screen. A substantial acceleration is possible by using (Gaussian)
MIP maps. After a MIP map of the framebuffer is constructed
arbitrary-sized Gaussian filters can be applied to it in constant
time. While MIP maps work well, e. g., for glare [Kawase 2005],
they have difficulties if the gathering to perform is significantly
different from a Gaussian. Plus, even if the PSF is a Gaussian, the
gathering function is not necessarily a Gaussian anymore. One
solution of this problem are anisotropic MIP maps suggested by

Lee et al. [2009]. Such MIP maps contain only values that actu-
ally would contribute to the result, depending on an additional
criterion such as depth. Alternatively, the computation can be
accelerated using stochastic sub-sampling [Jimenez et al. 2009]
or separable filtering [Huang et al. 2011]. Diagonal structures or
high-dynamic-range content are however likely to cause artefacts
with both simplifications.

The biggest limitation shared by all scree-space methods is that
objects or lights which are not visible in the framebuffer do not
contribute to the image. However, in the years to come, screen-
space methods—due to their efficiency, ease of implementation
and control—are likely to remain the solution of choice until the
full simulation of distributed effects [Cook et al. 1984] becomes
feasible.
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with high dynamic range are often important to convey the presence
of a participating medium. Given the character of our method, it is
clear that simulating these requires employing an additional, com-
plementary approach, such as the fast epipolar sampling technique
by [Engelhardt and Dachsbacher 2010].

The method also requires specification of one arbitrary parameter,
aside from the physical properties of the simulated medium. This is
the threshold width ε (Sec. 3.3). However, it is an intuitive quantity
and once configured for a given scene it can in most cases remain
unchanged.

Decoupling of scattering and absorption Despite the fact that
absorption and scattering are intertwined effects the former has to
be taken care of before the latter in a screen-space method like ours.
The reason is that absorption is a distance-dependent effect that can
produce subtle but perceivable hue changes even for small distance
variations. As such it needs to be calculated in the full-screen reso-
lution where the distance information per-pixel is the most accurate,
hence is can not be done in Step 2 where the lower-resolution MIP
map is constructed. However, it also can not be calculated after the
filtering phase, because the blurred radiance coming from different

distances will exhibit different levels of absorption; if one would try
to compute the absorption after first blurring the scattered radiance,
multiple ‘halos’ from different distances could potentially overlap
in any given pixel, but each pixel would be attenuated depending on
its own distance, which might not correspond to distances the halos
originate from.

Hierarchical convolution The approximation of an incremental
convolution by a hierarchical one also bears some limitations, es-
pecially if an anisotropic filter is used as in our case. Although the
lower-resolution MIP levels are sufficient to represent the blurred
information from the perspective of its frequency, some spatial or
temporal high-frequency artefacts can still appear, mostly due to
the fact that the distance information in the higher MIP levels is
averaged. This might become a problem in the presence of a high-
frequency illumination, or in case of very dense media.

6 Conclusion

Our approach allows to approximate distinct colouring and blur
effects that can be essential to convincingly depict participating me-



dia such as water or various atmospheric conditions. As described
above, it shares the usual shortcomings of screen-space approaches,
in that it does not account for light not present in the framebuffer,
but also all their beneficial properties, like fast speed—taking only a
few milliseconds for typical screen resolutions—and its ease of im-
plementation and integration into an existing screen space / deferred
shading-pipeline. We deem this trade-off as acceptable and hope
for an application of our technique in games and other real-time
applications, but also image editing tools.
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