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Figure 1: Cumulus congestus and Cirrocumulus altocumulus rendered fully dynamically by our approach at 25 and 35 FPS, respectively.

ABSTRACT

This paper presents an interactive algorithm for simulation of light
transport in clouds. Exploiting the high temporal coherence of the
typical illumination and morphology of clouds we build on volu-
metric photon mapping, which we modify to allow for interactive
rendering speeds — instead of building a fresh irregular photon map
for every scene state change we accumulate photon contributions in
a regular grid structure. This is then continuously being refreshed
by re-shooting only a fraction of the total amount of photons in each
frame. To maintain its temporal coherence and low variance, a low-
resolution grid is used, and is then upsampled to the density field
resolution in each frame. We also present a technique to store and
reconstruct the angular illumination information by exploiting prop-
erties of the standard Henyey-Greenstein phase function, namely
its ability to express anisotropic angular distributions with a single
dominating direction. The presented method is physically-plausible,
conceptually simple and comparatively easy to implement. More-
over, it operates only on the cloud density field, thus not requiring
any precomputation, and handles all light sources typical for the
given environment, i. e., where one of the light sources dominates.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Monte Carlo

1 INTRODUCTION

Radiative transport in clouds and participating media in general
is an important and broad problem. Specifically, interactive cloud
rendering is often needed when an application includes interactive
visualization of outdoor environments. That includes serious ap-
plications such as flight and soaring simulators or meteorological
visualizations, but also popular applications, for instance 3D games
and packages like Google Earth.

Among participating media, clouds stand out as a particularly dif-
ficult case for state-of-the-art volumetric light transport techniques.
Their virtually unit albedo and small relative mean free photon path
imply simulation of many scattering orders. The very high scat-
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tering anisotropy of cloud droplets in turn causes difficulties for
purely ray-based methods [37] and approaches based on discrete
light propagation volumes [7, 14, 12]. The latter property in combi-
nation with the usual high complexity of cloud shapes also makes
diffusion-based approaches [40, 32] unsuitable, mainly because it
is usually difficult to fulfil the boundary conditions of the diffusion
equation. Finally, the high variability of morphological cloud types
makes it difficult to establish an efficient representation of their mass
distributions. Naturally, these issues are even more challenging for
interactive rendering techniques.

The method presented in this work contributes to the topic in
question in these main ways:

• We present a general scheme for propagation of light energy inside
participating media using photon beams. The energy is stored in a
regular grid-like photon map, which is decoupled from the cloud
density field. This allows a continuous updating of the photon
map by re-shooting only a fraction of the photons that constitute
the scene illumination in each frame. Although this potentially
causes the photon map to contain a partially obsolete illumination
solution, in slowly-changing environments such as clouds the
difference from the ideal solution will typically be negligible.

• To avoid the necessity of explicitly storing individual photons we
introduce a specialized representation of the angular illumination
information. This representation accumulates the average cosine
of the stored photons in respect to a reference direction (usually
the direction of the strongest light source present in the scene).
This accumulated value in fact is the asymmetry factor of the an-
gular photon distribution in each cell, and is subsequently used to
reconstruct the directionally-dependent illumination by evaluating
the Henyey-Greenstein function parametrized by this factor and
by the reference direction.

• The presented method natively maps well to modern GPUs, which
we show by our own implementation. Despite not containing any
specific low-level optimizations it is capable of simulating the
radiative transport process in clouds at interactive speeds.

2 RELATED WORK

A large volume of research concerns itself with participating media
and related subjects [6]. We will therefore limit ourselves to works
directly relevant in the current context.

Photon mapping The intrinsic ability of the basic photon map-
ping algorithm to cache radiant energy in the scene shows to be
very beneficial for participating media rendering. This application
has first been described by Jensen and Christensen [21]. Later,
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Figure 2: Decomposition of the three basic scattering categories in clouds. Note that the transition from single to second and higher orders of
scattering is very subtle due to the high scattering anisotropy. For this reason methods that handle single and multiple scattering separately
necessarily produce inconsistent results.

Jarosz et al. [20] developed a new beam gathering technique specif-
ically for participating media and subsequently generalized it also
for propagation of the radiant energy itself [19]. Their contribution
represents a significant improvement over the classical point-based
photon mapping, although it remains to be seen how it would cope
with the very high amount of scattering orders encountered in clouds.

Several attempts to speed-up photon mapping by continuously
updating the photon map exist. Airieau et al. [1] developed an inter-
active technique for continuous streaming of photons, where parts of
the scene where illumination changes more rapidly are updated with
higher priority. A similar (interactive) method has been described
by Dmitriev et al. [8], who utilized the periodicity properties of
Halton sequences to identify the photon groups to update. Jiménez
et al. [22] then generalized this approach to participating media,
which however causes the algorithm to perform about an order of
magnitude slower than necessary for interactive frame rates. Notable
GPU implementations of photon mapping were proposed by Purcell
et al. [36] and Zhou et al. [47], but only Krüger et al. [27] consider
participating media. Photons can be splatted to surfaces efficiently
using the GPU instead of performing costly density estimations [33].
We generalize this idea to volumetric photon mapping.

Interactive methods for general media In recent years the
increasing computational power of modern GPUs enabled develop-
ment of interactive approaches for participating media rendering,
although they are still burdened by various limitations.

Approaches that consider only a subset of light paths in the
medium are also common, partly because they usually map well to
modern GPU architectures. Often they restrict themselves to mod-
elling single scattering, even when including advanced effects such
as volumetric caustics [45, 10, 2, 29]. Ihrke et al. [17] use wavefront
rendering to evaluate the Eikonal equation in volumes, considering
refraction and single scattering in heterogeneous media. Kaplanyan
and Dachsbacher [23] use a discrete-element approach similar to
lattice-Boltzmann lighting in order to render low-frequency global
illumination and low-order scattering. Shadows for single-scattering
can efficiently be computed using deep shadow maps [30], which
generalize binary shadow maps to storing a transmission function
per pixel. Yet again, these methods are unsuitable for clouds ren-
dering — that is simply because they neglect the higher scattering
orders, which play a significant role for the appearance of clouds.

Engelhardt et al. [11] present a method based on the original
instant radiosity approach by Keller [24]. Although successfully
capturing appearance of several participating media, it shares the
limitations of the original instant radiosity approach, namely the
difficulty with handling highly anisotropic reflections and scattering.

Precomputation and Caching Another possible approach is
caching of illumination globally for the entire volume [18, 34]; var-
ious methods from this group then differ primarily in how this is
achieved. Kautz et al. [39] include simple participating media in their
PRT approach, while Zhou et al. [48] use a decomposition of the

medium into a low frequency representation and a high-frequency
residual field, and solve the radiative transport in the medium by
applying the diffusion equation to the low-frequency field. However,
these approaches rely significantly on precomputations and therefore
are not suitable for dynamic media. Moreover, the illumination infor-
mation is encoded into spherical harmonic functions, which are not
well suited for representing highly anisotropic angular distributions.

Cloud rendering Although specialized methods for render-
ing of clouds are more typical in the interactive domain, early
non-interactive methods focused on simulating this phenomenon
exist. Examples of these include works by Gardner [13] and
Nishita et al. [35]. These clearly demonstrate that clouds have
always been of prime interest among participating media.

Though many diverse approaches for interactive clouds rendering
exist, they can roughly be categorized as empirical and physically-
based. From the former group we mention the typical billboard-
based technique by Wang [42] used for instance in Microsoft Flight
Simulator 2004 or CryEngine2 [43].

On the other hand, many different paradigms have been taken
in the existing physically-based approaches. Riley et al. [38] use
the half-angle slicing technique of Kniss et al. [25] known from
the domain of volume visualization. The method, however, is still
semi-empirical and considers only the forward portion of multiple
scattering and a single light source. The concept of Monte-Carlo
illumination networks by Szirmay-Kalos et al. [41] is more the-
oretically sound, its main drawback however is the necessity to
recalculate the entire network from scratch every time the cloud
density field changes. Yet another approach has been taken by
Bouthors et al. [3, 4] who analyse light behaviour in plane-parallel
homogeneous slabs and based on this analysis design a series of
ad-hoc functions to obtain illumination in the rendered cloud. The
method produces interesting results, it is however limited to simple
light sources and builds primarily on theoretical assumptions rather
than on actual observations of the simulated environment.

Cloud photograph Simulation, anisotropic Simulation, isotropic

Figure 3: Anisotropic scattering is a defining visual property of clouds,
causing above all the silver lining effect. Without correctly handling
anisotropic scattering it is difficult to reproduce this phenomenon.
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Discussion Generally, we observe that the existing methods for
rendering of participating media can be categorized in yet another
way. The first category are approaches that can very rapidly simulate
single scattering, but handle multiple scattering either in a supple-
mental way or even not at all. On the other hand, approaches that
handle multiple scattering using lattice-based propagation or diffu-
sion techniques fail at reproducing low-order or highly anisotropic
effects (Fig. 3). The main difficulty of clouds lies in the fact that
their high scattering anisotropy makes the transition from low-order
to high-order scattering effects very gradual (see Fig. 2), thus these
effects need to be handled in a consistent manner. The third group
of hybrid methods that use ray-based propagation of radiant energy,
but cache this energy in some way, has the potential to handle the
described phenomenon. Unfortunately, this is usually hindered by
the use of spherical harmonics to store the angular radiance distribu-
tions, destroying any high-frequency illumination effects (or making
the caching process too costly as the number of basis coefficients
needed to represent increasing frequencies grows quadratically). To
remedy this situation is the main target of our work.

3 METHOD OVERVIEW

This section provides an overview of our method. We first introduce
the physical model and assumptions we use (Sec. 3.1) and then give
a brief overview of the method itself (Sec. 3.2).

3.1 Model
The physical model that describes the propagation of light through
participating environments is mathematically described by the radia-
tive transfer equation (RTE) [7, 31]:

dL(x,ω)

dx
=−σt(x)L(x,ω)+σs(x)

∫
Ω4π

p(x,ω,ω ′)L(x,ω ′) dω
′.

RTE describes differential change of radiance L at a point in space x
in the direction ω . σt and σs are the extinction and scattering cross
sections of the simulated medium (in clouds we consider σt = σs).
The spherical function p is the phase function; if p is the same for
the entire medium the first parameter x can be omitted. In addition,
p is usually considered to be rotationally symmetric around the
incident direction ω and therefore becomes a 1D function of the
angle between the incident and the outgoing direction. We employ
both of these assumptions and will therefore use the notation p(θ)
interchangeably with p(ω,ω ′). Since we do not consider emission
in clouds our formulation of RTE does not contain an emission term.

The classical volumetric photon mapping solves the RTE by
performing a random Monte Carlo walk through the medium. This
however requires the ability to determine the next location where
the simulated photon will interact with the medium. To obtain this
location in an unbiased manner we utilize the Woodcock tracking
technique [44]. Please refer to Appendix A for its brief description.

The phase function model we employ is the standard formulation
by Henyey and Greenstein [16]:

pHG(θ ,g) =
1

4π
· 1−g2

(1+g2−2gcosθ)3/2
(1)

where g ∈ (−1,1) denotes the anisotropy of pHG. It is an average
weighted cosine of the scattered directions produced by any given p:

g =
∫

Ω4π

p(θ)cosθ dω
′. (2)

There are multiple reasons why we have decided to use the Henyey-
Greenstein function instead of a tabulated rigorous Mie phase func-
tion (such as for instance in Bouthors et al. [3, 4]). The Henyey-
Greenstein function thanks to its closed analytical form is more

portable, cheaper to evaluate and can be efficiently importance-
sampled. Moreover, we utilize its mathematical properties to rep-
resent the illumination in clouds as well (Secs. 4.1.2 and 4.4). The
main drawback of using this approximation is its inability to repro-
duce advanced scattering effects occurring in clouds, e.g., fogbows
and glories [4]. However, these phenomena are comparatively rare
and can be modelled separately.

Assumptions At this point we establish assumptions about
the environment we aim to simulate. We base these assumptions
primarily on actual observations of the simulated environment, and
later demonstrate how they are used to the method’s advantage.

• Illumination. Clouds are virtually always illuminated by a single
strong yet slowly-moving light source with one dominant direc-
tion (the Sun or the Moon) and by additional slowly-changing
environmental light sources (the sky, street lights in urbanized ar-
eas, etc.). Occurrences such as an airplane rapidly flying through
a cloud are sufficiently rare and we deem acceptable to neglect
them. Mathematically, this assumption can be expressed in the
way that clouds are illuminated by low-frequency light sources,
and that both in temporal and spatial domain.

• Mass distribution. Clouds are indeed dynamic media, as their
shape changes due to air convection. However, not only is this
process never very rapid, it is seldom even noticeable for a human
observer. Movement of whole clouds across the sky due to wind
is usually relatively slow as well.

Apart from these, no other assumptions are made by our approach.
We allow for any type and number of light sources, as long as there
is one with a dominant radiant power and direction. Even local light
sources are acceptable, if they move slowly. Similarly, we allow
for arbitrary cloud shapes that can be represented by a 3D discrete
density field. The source of this density field can be arbitrary as
well — it can be stored as a series of volumetric animation frames in
memory, or can result from a dynamic cloud convection simulation.
No precomputations need to be performed on these data. And finally,
we do not impose any limitations on the observer orientation or
movement.
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Figure 4: Schematic view of our algorithm pipeline.

3.2 Overview
The input to our approach is the scalar density field of the simulated
cloud, stored in a regular grid D(i, j,k) : N3 → R+ (see Fig. 4).
Assuming a slowly changing environment we cache illumination
into another regular grid I(i, j,k) : N3→ R4. Every cell in I stores
the RGB flux as well as one anisotropy coefficient (Eq. 2) to model
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the light distribution (Sec. 4.1.2). The grid I is updated progressively,
so each cell stores a mix of the current and several increasingly
outdated values; however, as long as our assumptions hold, the
difference from the ideal solution will be very small.

The caching data structure is a circular buffer of m (we use m =
20) partial caches H0(i, j,k), . . . ,Hm−1(i, j,k) that combine as

I(i, j,k) =
1
m

m−1

∑
l=0

Hl(i, j,k)

to the full cache. The spatial resolution of the cache I is much
lower than the one of the density field D to keep the amount of
consumed memory and the variance of I in low values. To improve
quality, before reconstructing the final image from I and D using
ray-marching we upsample I to a second high-resolution cache J,
which has the same resolution as D.

The global energy state of the cloud is represented by nt photons,
which are divided into m generations, each containing ng = nt/m
photons. In each frame f the algorithm performs the following:

1. The flux of ng photons that are shot and traced through D is
stored into a new partial cache Hnew (Sec. 4.1).

2. The partial cache Hold = H f modm in the circular buffer becomes
the old partial cache and we replace it with the new partial cache
Hnew as: I( f ) = I( f−1)−Hold +Hnew (Sec. 4.2).

3. The low-resolution cache I is upsampled to another cache J
using the density field D as a guidance signal (Sec. 4.3).

4. Ray-marching D and J produces the final image (Sec. 4.4).

In the following we present the details of each step.

4 OUR APPROACH

In this section we describe temporally-coherent volumetric photon
mapping in more detail. We will describe it for a general fine-grained
parallel machine (our implementation uses CUDA). Such a machine
executes many parallel threads, can read and write into buffers, read
from special buffers called “textures” that provide efficient one-,
two- and three-dimensional linear filtering, and can read and write
to fast “local” memory.

At the beginning of each frame the cloud density field D is up-
dated and stored into a texture, e. g., using a simulation of cloud
dynamics or by streaming the dataset from memory on-the-fly.

4.1 Illumination
Illumination is computed by tracing photons (Sec. 4.1.1) in the
density field D and storing (Sec. 4.1.2) them into a new partial cache
Hnew. The spatial resolution of H is typically much lower than of D:
the number of its cells should not exceed 2400 (for a cubic grid this
limits the resolution to 133) in order to fit into the 48 kB of shared
local memory available on current GPUs.

4.1.1 Photon tracing
In every step, ng photons are shot from the Sun and the sky (note
that different number of photons may be traced in each frame, e. g.,
if there is a need to balance time taken by other tasks performed by
the GPU; the only requirement is that these photons carry the same
flux, so that the energy state of the scene remains consistent). First,
they are attenuated due to atmospheric scattering using a tabulated
model [5, 9]. For photon propagation, we adapt the photon marching
technique presented by Jarosz et al. [19]: for every photon a parallel
thread is started and runs in a while-loop that scatters and stores
photons (Sec. 4.1.2) until the photon leaves the volume. Instead of
depositing photons in constant [19] or adaptively-sized [28] steps,
we perform randomly-sized steps — since we employ Woodcock
tracking (that itself performs randomly-spaced steps to generate
interactions with the medium) for obtaining free photon path through

the medium, we deposit photons at the locations where Woodcock
tracking examines the currently generated event. This essentially
helps us to avoid two simultaneous stepping procedures along the
propagation ray. See Fig. 5 for an illustration of this process.

x1

x2

x3
virtual scattering event
real scattering event
photon storing
low transmittance threshold
medium boundary

Figure 5: The scheme of our photon beam propagation procedure.
Only the orange-framed grid cells receive photon energy. For details
please refer to Appendix A.

In addition, the original photon marching technique traces each
photon beam up to the medium boundary. Such an approach is
indeed suitable for optically thin media such as fog and certain kinds
of smoke which Jarosz et al. [19] use in their demonstrations. How-
ever, in optically thick environments, such as clouds, this approach
invests large amounts of computational effort into simulating and
storing photons that—due to low medium transmittance—carry only
very little energy. To overcome this problem we simply stop tracing
a beam if its transmittance gets below a small threshold. Although
this of course introduces a slight bias, our experiments show that the
resulting speed-up can even reach and order of magnitude.

Further, we use the similarity theory [46] to speed up the tracing
process. We pose a fixed threshold t (for instance t = 0.05) and if
the cumulated scattering anisotropy of a traced photon gets below t,
we switch to the reduced scattering cross section σ ′s = σs

√
(1−g).

In our case it is easy to determine this, because the angular distri-
bution of light scattered i times corresponds to i self-convolutions
of the phase function, which for Henyey-Greenstein function in
turn corresponds to just using gi instead of g as its anisotropy pa-
rameter [32]. Therefore for a given photon we switch to σ ′s after
i = log(t)/ log(max(g,ε)) bounces (for a small ε > 0).

4.1.2 Photon storing
The classical (volumetric) photon mapping [21] and volume irra-
diance caching [18] both have two shortcomings that hinder their
application to interactive cloud rendering: maintaining and querying
of complex spatial data structures and limited support for highly-
anisotropic scattering due to spherical harmonic functions used for
the caching. Our approach overcomes both limitations by using a
simple regular grid and a different basis function.

Regular photon grids Classic volumetric photon mapping
stores volumes into hierarchical data-structures, such as kD-trees,
that can adaptively resolve fine spatial details in the photon distri-
bution as found, e. g., in occlusions or caustics in surface lighting.
For clouds however, fine spatial details are usually absent. On the
other hand, inserting photons into a complex structure and perform-
ing an adaptive density estimation is less suitable for contemporary
massively-parallel machines which we target. We therefore suggest
to trade adaptivity for simplicity and revert to a plain regular grid
in which the illumination is accumulated, similar to irradiance vol-
umes [15] (also see Fig. 5). This grid H is sufficiently small to fit
into local memory shared by a block of threads executed on one
multi-processor. Storing a photon into such a three-dimensional grid
is now as efficient as splatting it in two dimensions [33]. Also, as
atomic operations are necessary to perform the accumulation prop-
erly, for the fast local shared memory we found them not to cause
virtually any additional overhead.
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Sec. 4.3 explains how an upsampling scheme can be used to
improve the effective spatial resolution of the cache.

Henyey-Greenstein basis Approaches that cache the illumina-
tion information inside the volume [18, 34] use spherical harmonics
to approximate the radiance function. This is suitable for isotropic
and moderately anisotropic media, but not for strongly forward-
scattering media such as clouds, where a high number of SH co-
efficients is required. This is problematic, as the strong forward
scattering in clouds is visually important for their appearance, for
instance causing the well known silver lining phenomenon (Fig. 3).

(a) (b) (c)

Figure 6: Local Henyey-Greenstein lobes — (b) shows one slice of the
greyscale-encoded anisotropy coefficients of the illumination solution
that correspond to the marked region on the cloud (a). The exact
shape of the lobes in the cache locations is shown in (c). The light in
(c) is coming from the left.

To overcome this limitation we propose to represent caches using
the Henyey-Greenstein function (Eq. 1). Evidence shows [17] that in
situations where most energy in scene comes from a single direction
then also a majority of scattered light will propagate in a very similar
direction, which will be especially true for clouds. Thus, when
storing a photon into a cache cell, in addition to its radiant flux
we also accumulate its cosine with respect to the dominant light
direction. This only requires to store four values (an RGB-triple for
flux and a single cosine value) per cell and the projection consists of
evaluating just a single dot product per photon. In addition we count
the number of photons arriving at each cell, and after all photons are
shot, divide the accumulated cosines by the number of contributing
photons for a proper normalization. The value obtained this way
is anisotropy factor for the given cache cell (Eq. 2). We can then
directly use the Henyey-Greenstein function to represent the per-cell
angular illumination distribution (Fig. 6).

Photons which are not emitted by the Sun but from the sky are
projected into the same HG basis. As they—in difference from the
Sun photons—arrive from a wide distribution of directions, their
angular contribution to the caches is close to uniform and thus does
not require consideration of an additional reference direction. Nat-
urally, in scenarios where the sky contributes a significant portion
of energy (e. g., after sunset or in optically thicker atmospheres),
this can decrease the anisotropy of the HG lobes too much. In such
situations one could simply store only the intensity of these envi-
ronmental photons separately and regard them as having a uniform
angular distribution.

4.2 Update
After computing the cloud illumination using the photon tracing
explained before, the partial cache Hnew is added to the global
solution I and the outdated cache Hold is removed. This is done
using a simple parallel addition and subtraction over all cache cells.

4.3 Upsampling
At this point I could already be used for rendering. However, it is
of much lower spatial resolution than D. This was required to fit it
into shared local memory and to reduce variance of the illumination
solution (see Appendix B). However, the low spatial resolution of

the cache I can substantially blur the illumination and cause interpo-
lation artefacts. To avoid this limitation, we propose to upsample I
to J, a grid with the same spatial resolution as D (Fig. 7). We use
D as a guidance signal and apply joint bilateral upsampling [26] to
avoid blurring over its edges. This approach provides empirically
good results, which is not unexpected as it can be assumed that in
clouds the density field D and the scattered radiance function Lout
(Sec. 4.4) will spatially correlate on a local scale (roughly within
one photon mean free path distance).

I + D I + D + noise J + D + noise

Figure 7: The importance of upsampling the coarse illumination solu-
tion I. Although noise perturbation helps break the unnatural smooth-
ness of D, it does not remove some abrupt artefacts caused by linear
interpolation of I.

The upsampling maps well to GPUs — it is a purely local opera-
tion executed in parallel exactly once per each upsampled solution
cell using a 33 Gaussian filter. The upsampling could also be per-
formed directly during the ray-marching, but we found it to be much
faster when done in an intermediate step.

4.4 Ray-marching
To visualize clouds we use the standard ray-marching [28] with
early-exit at 2 % transmittance threshold. For every pixel, a thread
is started that marches D and J, accumulates radiance from J (see
below) and transmittance T from D in front-to-back order, applies
compositing accordingly and terminates when T is less than 2 %.

To keep the memory consumption in manageable levels we use
only moderate resolutions for D (see Table 1). We then increase the
amount of detail by procedural perturbation of the texture coordi-
nates for fetching D and J by three octaves of simple vector noise
stored in a small 3D texture, similar to Kniss et al. [25] (Fig. 7).

For most clouds it is not necessary to ray-march them in full
screen resolution, as the frequency of the applied noise is still lower
than the screen sampling frequency (see Fig. 10, left). Therefore in
all cases we render the cloud in half the screen resolution, in both
dimensions. Additional speed-ups could easily be achieved by using
cloud impostors.

Reconstruction The illumination reconstruction is straightfor-
ward at this moment. J contains four values in each cell — an RGB
intensity of the illumination energy and the local anisotropy factor
g′, which represents the angular distribution of this energy.

It is however important to note that since we use the incident pho-
ton direction for the projection step during the photon tracing pro-
cedure (Sec. 4.1.1), the value of g′ represents the incident radiance
function Lin at the cache location. To obtain the desired outgoing
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Figure 8: Two possible ways of reconstructing the illumination informa-
tion represented by the Henyey-Greenstein function. Left: the yellow
area represents the value of Lout(ω) obtained by convolving Lin and
pHG(g). Right: the yellow segment is directly the value of Lout(ω).

radiance value Lout(ω) for a given view direction ω it is necessary
to convolve Lin (represented by pHG(g′)) with the medium phase
function centred around the viewing direction (Fig. 8, left). Instead
of computing the convolution directly (e. g., numerically) we once
more utilize the self-convolution property of the Henyey-Greenstein
function (Sec. 4.1.1) — and simply evaluate pHG(θ ,g ·g′), where
g is the global anisotropy factor used for scattering simulation in
the cloud (Fig. 8, right). This is mathematically equivalent (see
Appendix C).

An additional benefit of our Henyey-Greenstein representation
is that the angular illumination information represented this way
reproduces the scattering anisotropy in clouds well, but at the same
time is smooth. This prevents emergence of any high-frequency
noise, which would look very unnatural in clouds.

5 RESULTS AND DISCUSSION

Our tests have been conducted on a laptop PC with 2 GHz Intel
Core i7-2630QM CPU, Nvidia GTX 485M GPU and Windows 7
64-bit. In all our tests we use the following global settings: 400 k
photon beams, m = 20 partial caches, ray-marching step size of
d/300 (where d is the cloud bounding box diagonal) and a screen
resolution of 1920×1200. We have performed two kinds of tests —
method performance measurements and analysis of the illumination
outdating during scene state change.

Performance We have used three datasets for timing measure-
ments: static datasets of Cumulus congestus (dense concentrated
cloud) and Altostratus undulatus (sparse wavy cloud) and an ani-
mated smoke dataset available in PBRT renderer (pbrt.org). The
scene settings and measured timings are summarized in Table 1.
Figs. 1, 10 (right) and 11 show the results of our method, including
the measured datasets. All density fields beside the PBRT smoke
were modelled by hand as meshes and voxelized into 3D grids.

Illumination obsolescence Since our method amortizes the
illumination computation there is a various level of obsolescence
in the partial solutions. To show that our update process is suffi-
ciently fast we compare clouds rendered under constant light source
movement against clouds under static illumination. Fig. 9 shows the
resulting images. The maximal luminance difference in the evening
(when the illumination changes most rapidly) was 13 %, but there
is no observable difference between the results. During the day the
difference is completely negligible (under 3 %). Please note that
although the Sun’s angular speed was only 0.5 deg / s this is still 120
times faster than the real-time speed and several times faster than
is commonly used in interactive 3D applications (for instance the
common time ratio in FPS games is 1 game-time hour to 2 real-time
minutes, which corresponds to an angular speed of 0.125 deg / s).

(a) (b) (c)

Figure 9: Illumination obsolescence in Cumulus congestus cloud
during day and in the evening. (a): Sun moving in 0.5 deg/s vertically.
(b): stationary Sun. (c): difference×5 (dark-hot).

Figure 10: Left: Cirrocumulus altocumulus rendered at full reso-
lution (top, ray-marching time 77 ms) and half resolution (bottom,
ray-marching time 21 ms). Right: clouds rendered at night.

6 CONCLUSION AND FUTURE WORK

We have presented an interactive cloud rendering method. Our al-
gorithm utilizes a temporally-coherent illumination caching process
to amortize the simulation costs across multiple frames. Our novel
representation of angular illumination distribution inside clouds en-
ables us to reproduce the characteristic appearance of many clouds,
while keeping the computational and storage costs relatively modest.
The algorithm maps very well to the architecture of modern graphics
hardware, and hence all its major steps can be evaluated in parallel
on the GPU.

The proposed method improves on the existing techniques in
multiple regards. We build on realistic observations about the typical
environment of clouds and use these to our advantage. Our method
is not limited to any particular cloud type or any subset of possible
light paths in clouds, and can handle all important light sources
typical for the simulated environment. We consider all physically
plausible properties of clouds and the entire method is physically
meaningful and conceptually simple.

The possible future work includes several directions. First, there
is need for a multiresolution scheme to enable simulation of multiple
clouds at once without linear decrease in speed. Second, the algo-
rithm might possibly be adapted to other types of participating media
by relaxing or even completely dropping the specific assumptions
about the simulated environment. For example, multiple HG lobes
could be used to represent more complex illumination distributions
than the one dealt with in the described approach. It remains to be
seen to what extent is this feasible.
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Table 1: Performance of our algorithm in various stages. All other steps took less than 1ms to execute, thus we don’t list them.
Dataset D resolution D size (km) σs (m-1) g I resolution Photon tracing Upsampling Ray-marching Total
Altostratus undulatus 70×22×71 1.40×0.44×1.42 0.03 0.96 18×6×18 9.5 ms 2.3 ms 14.0 ms 25.8 ms
Cumulus congestus 48×62×90 0.94×1.22×1.78 0.03 0.96 10×12×18 17.1 ms 3.0 ms 20.4 ms 40.5 ms
PBRT smoke (anim.) 100×40×100 2×0.8×2 0.05 0.95 18×7×18 19.7 ms 3.3 ms 37.8 ms 60.8 ms

Figure 11: More results of our method. In reading order, by pairs: Altocumuls lenticularis, Altostraturs undulatus, Cumulus humilis, Cumulonimbus
incus, Stratocumulus and the PBRT smoke dataset.
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A WOODCOCK TRACKING

One of the core operations performed by volumetric photon mapping
is finding the distance to a next scattering or absorption event. We
utilize Woodcock tracking to do this in an unbiased manner. Let us
assume the last scattering event occurred at xk and the generated
(normalized) scattering direction according to p is ω . The next inter-
action will take place at xk+1 = xk +devent ·ω . For heterogeneous
media, to obtain the distance devent one needs to solve the implicit
equation ∫ devent

0
σt(xk + t ·ω) dt =− ln(1−ξ )

where ξ is an uniformly distributed unit random variable.
Basically, Woodcock tracking steps along the photon propagation

direction using steps with random exponentially-distributed length
with the mean 1/σT (where σT is the peak extinction cross section
value throughout the entire medium). The technique then in each
step probabilistically decides if an interaction takes place at the
given position (i. e., if the currently generated event is real or just
virtual), so that the distance to the generated interaction event has the
mean value of devent as defined the above equation. Finally, Russian
roulette with the probability of σs(xk+1)/σt(xk+1) is used to decide
if the generated interaction is scattering or absorption (this last step
is skipped for clouds as σt = σs). For more details please refer to
Raab et al. [37].

B TEMPORAL COHERENCE

In order to avoid low frequency temporal noise in the rendered
images it is necessary to maintain a low variance of the illumination
solution I. As the convergence rate of a Monte Carlo estimate is
O(1/

√
n), to maintain 2 % error in each grid cell the total number

of photons in scene nt needs to be set so that each cell in I receives
at least around n≈ 2500 photons (together from all partial caches
H0, . . . ,Hm−1). Since the photon budget is roughly fixed, the grid
resolution needs to be adjusted accordingly to fulfill this criterion (in
addition to the limitation imposed by the available shared memory
of GPUs, see Sec. 4.1).

Note however that it is necessary to differentiate between photon
beams and individual photons — a single photon beam can dispose
many photons into the grid (Fig. 5). There is no precise way to
determine the ratio between these two for a particular nontrivial
dataset, but a good initial approximation is easily derived from the
scattering cross section σs, the average density of the utilized dataset
and its spatial dimensions.

C ILLUMINATION RECONSTRUCTION

Recalling the radiative transport equation described in Sec. 3.1:

dL(x,ω)

dx
=−σt(x)L(x,ω)+σs(x)

∫
Ω4π

p(x,ω,ω ′)L(x,ω ′) dω
′

it can be seen from the definition that the integral term on the right
is a spherical convolution between the incident radiance (hereinafter
Lin) and the medium phase function p at x.

In our approach we represent Lin by approximating the incident
photons’ flux by the pHG basis function by averaging their cosine
values in respect to the dominant Sun direction, thus producing an
anisotropy factor g′ representing the angular distribution of scattered
photons at x (Sec. 4.1.2). Therefore Lin ≈ pHG(g′) and the integral
term becomes ∫

Ω4π

p(ω,ω ′)pHG(ω
′,g′) dω

′,

neglecting the location from now on. Note that the orientation of
pHG(g′) in space is given by the dominant light direction which is
constant for the entire cloud (although nothing prevents the orienta-
tion from varying in space by simply storing the direction separately
for each cell).

If the used medium phase function is also pHG parametrized by
some g, then utilizing the self convolution property of pHG [32]
(Sec. 4.1.1) we can write[∫

Ω4π

pHG(ω,ω ′,g)pHG(ω
′,g′) dω

′
]
(ω) = pHG(ω,g ·g′).

Thus pHG(g ·g′) represents the outgoing radiance function:

Lout ≈ pHG(g ·g′).
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